Category: Africa

  • A Passion for Rare Earth Elements and Thorium? Want to break a Global Monopoly? We Are Doing It.

    A Passion for Rare Earth Elements and Thorium? Want to break a Global Monopoly? We Are Doing It.

    Author Jeremiah Josey

    Plasma Assisted Digestion(TM) - Digestion Stage, post plasma
    Plasma Assisted Digestion(TM) – Digestion Stage, post plasma

    2023 marks a huge milestone for The Thorium Network and our division the International Plasma Research InstituteTM, or IPRITM. We successfully serviced a number of clients and cracked their inert materials using Plasma Assisted DigestionTM or PADTM for short.

    We did this at indicative costs and time much less than industry standards. Indeed, one client gave us material they are unable to recover anything from. We obtained almost 80% of the precious Rare Earths from the material. That’s case study 3 below.

    Here are the summaries of three case studies from some of our work in 2023:

    IPRI PAD(TM) Cracking Case Study 1
    IPRI PAD(TM) Cracking Case Study 1
    IPRI PAD(TM) Cracking Case Study 2
    IPRI PAD(TM) Cracking Case Study 2
    ipri padtm cracking case study 3
    IPRI PAD(TM) Cracking Case Study 3

    Why Plasma to make Rare Earths and Thorium

    Our plasma team is the best in the world, covering the United Kingdom, South America, the Middle East and the USA.

    Using a proprietary configuration of gases, geometry and plasma, at IPRITM we are able to change the structure of a mineral matrix such that we crack a normally locked, tight crystal mineral lattice, such as monazite or apatite. This makes them quite accessible using mild liquid separation technologies.

    The benefit are:

    • Removal of Naturally Occurring Radioactive Materials (NORMS) early from the process. This makes at-mine pre-processing possible before sending off for concentration.
    • Selective separation of element species using different wet conditions by adjusting temperature, pH and time.
    • Separation of low value rare earths, such as cerium, from high value rare earths in minutes.

    We are excited by the potential to apply PADTM to other inert mineral structures to explore their viability also.

    Here are some research papers from Necsa on Plasma technology that prove the technology.

    Separation of Rare Earth Elements

    Typical separation of rare earth elements is a capital intensive and expensive operation. With our partners we have PertraXTM. At a fraction of the cost of tradition solvent extraction technologies PertraXTM is able to safely separate rare earths with the smallest of environmental footprints with only a fraction of the hardware and consumables traditionally used. It’s a revolution in rare earth production.

    PertraXTM is also part of our activities at IPRITM.

    Plasma at Work with Zircon

    Expanding Operations in 2023

    During 2023, the esteemed and highly experienced scientist Dr. Necdet Aslan joined us at IPRI.tech. Dr. Aslan is Türkiye’s expert in plasma physics and technology and professor at Yeditepe University, Istanbul, Türkiye.

    As we move into the future we are excited by the prospects we have to expand our activities. Reach out to us here if you would like to join our illustrious team.

    About The Thorium Network

    Our objective at The Thorium Network is to Accelerate the Worldwide Adoption of Liquid Fission Thorium Energy. We do that through three main activities:

    1) We strive for easy access to Thorium as a fission fuel and focus on Liquid Fission – its technical superiority is unrivalled. The track and trace of nuclear fuels provides a solution for countries to go nuclear faster. Less headaches. This is done in full compliance with international guidelines and country regulations;

    2) Raising public awareness to the benefits of Fission. As well as being an innovator of supply chain logistics we are also a public relations group as as advocate Fission Energy;

    3) Driving licensing and installation of Fission machines across the world, using our network and access within the industry. For this we include all advanced fission technology, as well of course, Liquid Fission Thorium Burners (LFTBs).

    Social Media

    Follow us at on our social media:

    References and Links

    1. The website of IPRI.tech
    2. First PADTM and IPRITM announcement https://www.linkedin.com/feed/update/urn:li:activity:7021353696244420608
    3. https://smi.uq.edu.au/jkmrc-research
    4. https://www.linkedin.com/in/necdetaslan/
    5. https://www.linkedin.com/feed/update/urn:li:activity:7135939867191988225

    Tags

    #GotThorium #Fission4All #RadiationIsGood4U #NuclearEnergy #Plasma #MineralsProcessing #IPRI #PAD #PertraX

  • Fission Energy for Across Africa – a Vision of 2050

    Author Jeremiah Josey

    A Land of Plenty

    The African continent is a behemoth of people, resources and potential. The area of the combined 58 countries and regions is 1.8 times larger than Russia; 3 times larger than the European Union; and 84 times larger than Germany. The 1.3 billion people living in Africa (16% of the worlds’ population) have available to them a combined power generating capacity of ~230 GW. This equates to about 1,500 kWh per person per year in energy consumption.

    A Billion More People

    Over the next 30 years there will be another 1 billion new people born on the African continent. Africa will be the youngest and most dynamic region on earth. With global “peak child” happening in 2014 (a demonstrable fact) the number of children coming to the planet has plateaued and will remain that way for the foreseeable future as societies improve their living standards and reduce the size of families. This is also so in Africa, yet the population will grow no matter what. Furthermore, the African continent will hold more than 3 billion people by 2100.

    And energy will be the prime enabler to provide those billions with a decent quality of life.

    Improving Lifestyle means Increasing Energy Consumption

    South Africa has the highest energy consumption per person, at 4,100 kWh per year. Yet this is still below the 5,500 kWh average across Europe. Further across the continent it is clear that some countries lack basic energy infrastructure to bring energy to their people.

    African power consumption
    African power consumption per person

    Let’s assume that by 2050 the present average of 1,500 kWh per person per year increases to 3,000 kWh*. Thus the total energy generation capacity becomes almost 800 GW. Thus 570 GW of new power generating capacity is required to be built from now to 2050.

    *This means a 50 MW ‘burner’ will produce the energy needed for about 150,000 people.

    Sting on Nuclear energy
    Sting on Nuclear energy

    Avoiding the Renewables Trap

    The Africa Renewable Energy Initiative planned to install 10 GW of wind and solar by 2020 (achieved) and 300 GW of wind and solar by 2030. But they are forgetting Germany’s failed 20 year experiment in wind and solar. In Germany, CO2 levels are unchanged and electricity prices have doubled. Germany is restarting coal fired power stations because their industry is failing on the weak intermittent energy from wind and solar. The reason is simple. When considering all factors, wind and solar are simply not viable. This is best illustrated by the Energy Return on Investment ratio, or EROI. This bar chart is developed from the Berlin Institute for Solid-State Nuclear Physics (Institut für Festkörper-Kernphysik) and available on the Australian government’s nuclear scientist’s website.

    ANSTO EROI Bar Chart
    Energy Return on Investment

    The Energy Return on Investment Ratio is a macro level indicator of the overall usefulness of the energy derived from any particular form. How many units of energy can be recovered for each unit of energy expended. The EROI of wind and solar (3.9 and 1.6 respectively) fails miserably when compared to coal (30), gas (28) and existing solid-fuel nuclear fission (75). But our focus is the literal purple elephant in the room – Liquid Fission Technology. It’s EROI is 2000 to 1! With such a significant obvious benefit, over all other forms of energy production, it is only a matter of time before the genie is out of the bottle.

    Thus as the reality of low value return on wind and solar is realised, Liquid Fission Technology (and other small modular fission machines using traditional solid fuels) will gain traction to fill the growing requirements of Africa’s energy needs.

    A New Paradigm of Industrial Growth

    One can imagine a fleet of up to 5,000 small modular Liquid Fission machines each with a capacity of 100 MW installed strategically across Africa.  Creating a decentralised, distributed power generation system. Some sites will be larger or smaller than others, driven by  domestic electricity demands. With the power facilities having a fuelled lifespan exceeding 50 years, it is quite easy to see energy as no longer an issue across the African continent.

    Integrated Industrial Zone Powered by Molten Salt courtesy of Figes
    Integrated Industrial Zone Powered by Liquid Fission, courtesy of Figes of Turkiye

    But it goes further. Whilst reliable 24/7 power from Liquid Fission machines provides ample energy for domestic needs, the technology supports industrial growth and development. 1 GW and larger power installations are able to drive industries reliant on both heat and power. Facilities of this size could lead to industrial parks such as the one here envisaged by government energy and industrial development planners in Turkiye.

    A Positive Future

    Africa Blockchain

    The people of Africa have a bright future ahead for them. With technologies tried and true from western spheres, the people of Africa can select and choose the most appropriate and most suitable means to improve their quality of life. For themselves and for their children. Liquid Fission energy technology is a strong contender for the energy mix of Africa.

    Authored by Jeremiah Josey
    Founder
    The Thorium Network

    Links and References

    1. African power generation https://www.statista.com/statistics/1229517/installed-renewables-and-fossil-fuels-generation-capacity-in-africa-by-energy-source/
    2. Energy Consumption across Africa https://www.indexmundi.com/facts/indicators/eg.use.elec.kh.pc/map/africa
    3. Hans Rosling, 2015, Why the world population won’t exceed 11 billion https://www.youtube.com/watch?v=2LyzBoHo5EI
    4.  IEA Africa Energy Outlook 2019 https://www.iea.org/reports/africa-energy-outlook-2019
    5. African Renewable Energy Initiative https://media.un.org/en/asset/k1q/k1qnk48vzo
    6. https://stopthesethings.com/2021/04/25/big-backpedal-a-week-after-shutting-its-coal-fired-plants-germany-forced-to-reopen-them/
    7. Australian government nuclear science organisation https://www.ansto.gov.au/our-science/nuclear-fuel-cycle/advanced-nuclear-reactors/evolution-of-molten-salt-reactors
    8. https://figes.com.tr/