Category: Fission Energy

  • A New You? Changing the Way the World Thinks about Nuclear Energy

    Position Vacant – Commercial Director – SAFE Fission Consult(TM)

    Greetings fellow earth citizen and prospective new member of The Thorium Network!

    At The Thorium Network we have formed, what one chairman at a world nuclear government office once said: “the strongest team he’s ever seen in this field”.

    Our name for it is SAFE Fission Consult(TM)

    Link: https://TheThoriumNetwork.com/about/services/SAFE-Fission-ConsultTM/

    We have a former white house advisor, former heads of industry, and former government nuclear agency director, as well as several high profile people in the Atomic Energy space in the team.

    You can see them here (after you’ve requested access).

    Link: https://thethoriumnetwork.com/contributions/confidential-documents/

    Our focus is African countries – helping achieve energy sovereignty through approaching Atomic Energy in the appropriate way.

    About The Job

    In your role you’ll be reaching out to presidents, energy ministers, key advisors, business leaders and ensuring the message is getting through. To offer our consulting services, prepare proposals, submit them, negotiate, and secure contracts.

    In general you would be responsible for the following:

    + Market research: Gathering and analyzing information about our target market and our competitors.

    + Business development: Identifying and pursuing new business opportunities, such as partnerships, mergers, and acquisitions.

    + Sales and marketing: Developing and implementing marketing strategies and campaigns to promote our services.

    + Pricing: Determining the price points for our services, taking into account market trends and competition.

    + Supply chain management: Negotiating contracts with suppliers, monitoring the delivery of goods and services, and ensuring the efficient flow of materials and products.

    + Customer relationship management: Building and maintaining positive relationships with our customers and addressing any concerns or complaints they may have.

    + Budgeting and financial management: Preparing and monitoring the budget, tracking expenses, and making decisions to allocate resources effectively.

    + Risk management: Identifying and assessing our potential risks, such as economic trends or fluctuations in the market, and developing strategies to mitigate those risks.

    + Negotiation: Representing SAFE Fission Consult(TM) in negotiations with suppliers, customers, and partners, and working to secure favorable terms for us.

    + Team management: Leading and motivating a team of sales and marketing professionals to achieve our goals.

    Formal qualifications are not necessary. Just an adequate aptitude to either have the necessary knowledge or to acquire it. Yes, that means you don’t need to be a nuclear engineer or scientist to apply either.

    References are essential. At least 3.

    This position is preparation for conversion to CEO of this division at a later time.

    Reward and compensation is on a commission basis and also with project tokens until the main project is funded.

    How to Apply

    Apply here.

    Link: https://TheThoriumNetwork.com/join-us/

    You’ll be applying as “Team Member”, (this is #2 on our Join Us page), so be sure to follow the directions to get to the application form.

    You also have to request an access code. Details on how to do that you will find on the web pages also.


    About The Thorium Network

    More about The Thorium Network and being part of our team.

    Team members for the Thorium project are ambitious, conscientious, and passionate about the project and the planet. We play as a team.

    How you think is more important than what you do. And as a startup there is lots to do.

    Objectives – After Funding

    There are the objectives of The Thorium Network:-

    1) Our motto is “We Deliver Thorium”, and our objective is to accelerate the adoption of Fission Energy world wide. We strive for easy access to Thorium and focus on Molten Salt Fission Energy Technology powered by Thorium. This is done in full compliance with international guidelines and country regulations;

    2) Raising public awareness. As well as being an innovator of supply chain logistics and Fission advocates we are also a public relations group;

    3) Driving licensing of Molten Salt Fission Technology across the network, using our network and access within the industry.

    Critical and creative thinking on how to achieve our objectives is required.

    Being a team member means you will pick up from where we are and contribute to our activities for growth and success.

    This is after funding is completed.

    Objectives – Before Funding

    Before funding is completed, team members use their skill set to help out with our immediate priorities:

    1) fundraising;

    2) help complete a strong team and bring relevant skills to the table;

    3) help with our strategy, planning and operational activities.

    Yes, that means there are no salaries for now.

    Social Media

    We have these social media pages you should study to understand our audience:

    LinkTree: Linktr.ee/TheThoriumNetwork

    Telegram – t.me/TheThoriumNetwork

    Linkedin – linkedin.com/company/TheThoriumNetwork

    Twitter – twitter.com/ThoriumNetwork

    Instagram – instagram.com/TheThoriumNetwork

    Facebook – facebook.com/The.Thorium.Network

    Website – TheThoriumNetwork.com

    Formal International Connections

    Being part of this groundbreaking team means you will have an instant international network to connect with.

    To have this representation authority you will have a contract with us. The contract also secures your position pre and post funding.

    Interested to join us? Your own personal onboarding process will commence here.

    Link: https://TheThoriumNetwork.com/Join-Us/

    Flexibility is Key

    PS, there are no fixed hours and you work from wherever on the planet you have an internet connection.

    We look forward to having you on board.

    Best regards,

    Jeremiah Josey

    Founding Director

    TheThoriumNetwork.com

    We Deliver Thorium

    Tags

    #GotThorium #Fission4All #RadiationIsGood4U #NuclearEnergy

  • An Engineers’​ Point of View on Thorium: Unwrapping the Conspiracy

    Preface

    I have written this article exclusively for The Thorium Network(1) on the basis that I remain anonymous – my livelihood depends on it. I completed my nuclear engineering degree in the late 2000’s and shortly thereafter found a position in a semi-government owned nuclear power station – with several PWRs to look after. One year after graduating and commencing my professional career, I discovered the work of Dr. Alvin Weinberg(2) and began conducting my own research.

    My anonymity is predicated on my experience during this time of intense study and learning. As a young female graduate when I shared my enthusiasm for this technology I faced harassment and derision from my male colleagues, from high level government officials and also, unfortunately, from my university professors, whom I initially turned to for help. It wasn’t long before I started to keep my research and my thoughts to myself.

    I have found Women In Nuclear(3) to be most supportive and conducive to fostering and maintaining my interest in this technology, though even there it remains a “secret subject”.

    So when I discovered The Thorium Network(1), I decided it was a good platform to tell my story. I look forward to the time when there is an industry strong enough to support engineers like me full time, so we can leave our positions in the old technology and embrace the new.

    My Studies – No Thorium?

    As a nuclear engineer, I was trained to understand the intricacies of nuclear reactions and the ways in which nuclear power could be harnessed for the betterment of humanity.

    During my time in university, I learned about various types of reactors, including pressurized water reactors, boiling water reactors, and fast breeder reactors.

    Phew!

    However, one type of technology that was never mentioned in my coursework was the Thorium Molten Salt Burner (TMSB). Or “Thorium Burner” as my friends like to say. “TBs” for short. I like it too. Throughout my article I also refrain from using traditional words and descriptions. The nuclear industry must change and we can start by using new words.

    Shortly after graduating I stumbled upon information about TBs from the work of the famous chemist and nuclear physicist, Dr. Alvin Weinberg(2). TBs have enormous potential and are the future of nuclear energy. I can say that without a doubt. I was immediately struck by the impressive advantages that TBs offer compared to the technologies that I had learned about in school. I found myself wondering why this technology had not been discussed in any of my classes and why it seemed to be so overlooked in the mainstream discourse surrounding nuclear energy and in particular in today’s heated debates on climate change.

    What are TBs – Thorium Burners

    To understand the reasons behind the lack of knowledge and recognition of TBs, it is first important to understand what exactly TBs are and how they differ from other types of fission technologies. TBs are a type of fission device that use Thorium as a fuel source, instead of the more commonly used uranium or plutonium. The fuel is dissolved in a liquid salt mixture*, which acts as the fuel, the coolant and the heat transfer medium for taking away the heat energy to do useful work, like spin a turbine to make electricity, or keep an aluminum smelter bath hot**. This design allows for a number of benefits that old nuclear technology does not offer.

    *A little tip: the salt is not corrosive. Remember, our blood is salty but we don’t rust away do we.

    ** I mention aluminum smelting because it too uses a high fluorine based salt – similar to what TBs use. And aluminum is the most commonly used metal on our planet. You can see more on this process here: Aluminum Smelting(4)

    Advantages of TBs

    One of the most significant advantages of TBs is their inherent safety. They are “walk away safe”. Because the liquid fuel is continuously circulating, and already in a molten state, there is no possibility of a meltdown. If the core region tries to overheat the liquid fuel will simply expand and this automatically shuts down the heating process. This is known as Doppler Broadening(5).

    Additionally, the liquid fuel is not pressurized, removing any explosion risk. It just goes “plop”.

    These physical features make TBs much safer than traditional machines, which require complex safety systems to prevent accidents. Don’t misunderstand me, these safety systems are very good (there has never been a major incident in the nuclear industry from the failure of a safety system), but the more links you have in a chain the more chances you have of a failure. TBs go the other way, reducing links and making them safer by the laws of physics, not by the laws of man.

    Another advantage of TBs is their fuel utilization. Traditional machines typically only use about 3% of their fuel before it must be replaced. In contrast, TBs are able to use 99.9% of their fuel, resulting in effectively no waste and a much longer fuel cycle (30 years in some designs). This not only makes TBs more environmentally friendly – how much less digging is needed to make fuel – but it also makes them more cost-effective.

    TBs are also more efficient than traditional machines. They are capable of operating at higher temperatures (above 650 degrees C), which results in increased thermal efficiency and a higher output of electricity per unit of fuel. This increased efficiency means that TBs require even less fuel to produce the same amount of energy, making them even more a sustainable option for meeting our energy needs.

    The Conspiracy

    Ever wonder why all the recent “conspiracy theories” have proven to be true? It looks like Thorium is another one. It’s just been going on for a long, long time.

    So why, then, was I never taught about TBs in university? The answer to this question is complex and multi-faceted, but can all be traced back to one motive: Profit. The main factor that has contributed to the lack of recognition and support for TBs is the influence of the oil and fossil fuel industries. These industries have a vested interest in maintaining the status quo to preserve their profits. They have used their massive wealth and power to lobby against the development of competitive energy sources like TBs. Fossil fuel companies have poured billions of money into political campaigns and swayed public opinion through their control of the media. This has made it difficult for TBs to receive the funding and recognition they need to advance, as the fossil fuel industries work to maintain their dominance in the energy sector.

    First Hand Knowledge – Visiting Oak Ridge

    During my research I took a trip to Oak Ridge National Laboratory in Tennessee, where the first experimental Thorium Burner, the MSRE – the Molten Salt Reactor Experiment – was built and operated in the 1960s. During my visit, I had the chance to speak with some of the researchers and engineers who had worked on the MSRE – yes some are still around. It was amazing to speak with them. I learnt first hand about the history of TBs and their huge potential that they have. I also learnt how simple and safe they are. They called the experiment “the most predictable and the most boring”. It did everything they calculated it would do. That’s a good thing!

    The stories I heard from the researchers and engineers who worked on the MSRE were inspiring but also concerning. They spoke of the tremendous potential they saw in TBs and the promise that this technology holds for the future of meeting world energy demands. They also spoke of the political and funding challenges that they experienced first hand. The obstacles that prevented TBs from receiving the recognition and support they needed to advance. They were told directly to destroy all evidence of their work on the technology when Dr. Alvin Weinberg was fired as their director in 1972 and the molten salt program shut down. This was done under Nixon’s watch. You can even hear Nixon do this here on this YouTube(6) clip. Keep it “close to the chest” he says. I am surprised that this video is still up on YouTube considering the censorship we’ve been experiencing in this country in the past few years.

    1971 Nixon Phone Call – Nixon Speech on Jobs in California – TR2016a

    The experiences at Oak Ridge confirmed to me that TBs are a promising and innovative technology that have been marginalized and overlooked clearly on purpose. On purpose to protect profits of other industries. It was inspiring to hear about the dedication and passion of the researchers and engineers who worked on the MSRE, and it reinforced my belief in the potential of TBs to play a major role in meeting our energy needs in a sustainable and safe manner. I am hopeful that, with increased investment and support, TBs will one day receive the recognition and support they deserve, and that they will play a significant role in shaping the future of energy.

    Moving On – What is Needed

    Despite the challenges, I believe that TBs have a promising future in the world of energy from the Atom. They offer a number of unique benefits that can clearly address the any minor concerns surrounding traditional nuclear energy machines, such as safety and waste management. They are also the answer for world energy.

    Countering the Vested Interests – Education and Awareness

    In order for TBs to become a more widely recognized and accepted technology, more funding – both public and private – is needed to revamp the research and development conducted in the 1950’s and 1960’s. Additionally, education and awareness about the potential of TBs must be raised, in order to dispel any misconceptions and address the stigma that still surrounds nuclear energy, and to counter the efforts that are still going on even today, to stymie TBs from becoming commercial.

    In order to ensure that TBs receive the support they need to succeed, it is necessary to counter the influence of the oil and fossil fuel industries and to create a level playing field for competitive energy sources. This will require a concerted effort from the public, policymakers, and the private sector to invest in and promote the development of TBs.

    Retiring Aging Assets and Funding New Ones

    There’s also another factor that also needs to be addressed the same way as the oil and fossil fuel industries and that is the existing industry itself. The nuclear industry has long been dominated by a few large companies, and these companies have a vested interest in maintaining the status quo and investing in traditional reactor technology. This includes funding universities to train people such as myself. This has made it difficult for TBs to gain traction and receive the funding they need to advance.

    An Industry Spawned: Non Linear Threshold (LNT) and As Low As Reasonably Achievable (ALARA)

    A third reason is the prodigious amount of money to be made in maintaining the apparent safety of the existing nuclear industry. This was something else I was not taught in school – about how fraudulent science using fruit flies was railroaded by the oil industry (specifically the Rockefellers) to create a cost increasing environment for the nuclear industry to prevent smaller and smaller amounts of radiation exposure. Professor Edward Calabrese(7) taught me the most about this. You must watch his interviews.

    What has grown from this is a radiation safety industry – and hence a profit base – with a life of it’s own. I see it every single working day. It holds tightly to the vein that radiation must at all costs (and all profits) be kept out of the public domain. Again a proven flawed premise but thoroughly supported by the need, and greed, of the incumbent industry to maintain the status quo.

    Summing Up – Our Future

    In conclusion, as someone who studied nuclear engineering but never learned about Thorium Molten Salt Technology, I am disappointed that I was not given the opportunity to learn about this promising and innovative technology during my time in university. However, I am also grateful to have discovered it now, particularly with my professional experience in the sector. I am eager to see how TBs will continue to evolve and change the face of energy worldwide. With the right support and investment, I believe that TBs have the potential to play the main role in meeting our energy needs in a sustainable and safe manner, and I hope that they will receive the recognition they deserve in the years to come.

    Miss A., Space Ship Mother Earth, 2023.

    References and Links

    1. https://TheThoriumNetwork.com/
    2. https://en.wikipedia.org/wiki/Alvin_M._Weinberg
    3. https://win-global.org/
    4. https://aluminium.org.au/how-aluminium-is-made/aluminium-smelting-chart/
    5. https://www.nuclear-power.com/glossary/doppler-broadening/
    6. Nixon Ends Thorium https://www.youtube.com/watch?v=Mj5gFB5kTo4
    7. https://hps.org/hpspublications/historylnt/episodeguide.html

    Tags

    #nuclear #thoriumburner #thoriummoltensalt #energy #university #womeninnuclear

  • Liquid Fission Energy powered by Thorium – A Technological Breakthrough

    The history and development of Liquid Fission Energy powered by Thorium is a fascinating one, with many twists and turns that have shaped the direction of the technology. In the 1950s, President Dwight Eisenhower initiated the “Atoms for Peace”(1) program, which was designed to break the military-industrial complex and promote the peaceful use of nuclear energy. This enthused a number of scientists, including Dr. Alvin Weinberg(2) and Dr. Eugene Wigner, who already saw the potential for using nuclear energy as a clean and abundant source of power and where dismayed at the use of their work on the Manhattan Project to kill massive numbers of women and children(3).

    The development of Molten Salt Fission Technology powered by Thorium can be traced back to the 1950s and 1960s, when a group of scientists and engineers at Oak Ridge National Laboratory in Tennessee started working on the concept. They were looking for a way to improve the safety and efficiency of nuclear energy without creating a path to weapons, and they saw the potential in using thorium as a fuel. Thorium is a naturally occurring element that is abundant in many parts of the world, and it can be used to produce nuclear energy without the risk of weapons proliferation(4).

    However, despite this initial enthusiasm, in the 1970’s the development of Molten Salt Fission Energy was soon stymied by a number of obstacles. One of the main challenges had been the introduction of the Linear Non Threshold (LNT) and As Low as Reasonably Achievable (ALARA) principles by the Rockefellers, who intended to limit the growth of nuclear energy in order to protect their oil businesses. This was done by feeding on the fear of the unknown among the uneducated public and by using the fraudulent work of Professor Hermann Muller from his 1928 fruit fly research(5). As John Kutsch points out in his presentation(6), this was a critical turning point in the development of fission technology.

    LNT & ALARA: Linear No-Threshold & As Low As Reasonably Achievable by John Kutsch @ TEAC11

    One of the key figures against the development was Hyman Rickover(7). Rickover was a bulldog of a man, determined to have pressure water fission machines running on uranium installed in his submarines. He was equally determined to redirect public funds away from the development of Molten Salt Fission Technology. This was because he couldn’t use that technology for his submarines and wanted the money for his own research programs. Despite these efforts, however, the development of Molten Salt Fission Technology powered by Thorium still continued.

    A major step in this development was the creation of the Molten Salt Reactor Experiment (MSRE) at the Oak Ridge National Laboratory in Tennessee. The MSRE was designed to test the feasibility of using molten salt as both a coolant and fuel for a fission machine. The experiment was a huge success, proving that the technology was both safe and efficient. The MSRE operated from 1965 to 1969 and provided valuable data on the behavior of molten salt as a coolant and fuel. This data helped to lay the foundation for the continued development of Molten Salt Fission Technology, however 1972 saw the dismissal of Dr. Weinberg and the defunding of all Molten Salt work. Led by President Nixon, the hegemony was intent on snuffing out any competition, which Molten Salt Fission Technology clearly was.

    We remain in debt to Dr. Weinberg who continued to document, speak and promote their documented achievements until his passing in 2006 – just long enough for his material to be picked up and spread via the Internet(2).

    The next step in the development of Molten Salt Fission Technology was the creation of the Integral Fast Reactor (IFR) program(8). This program was initiated in the 1980s by the U.S. Department of Energy. The goal of the IFR program was to create a fission machine that was capable of recycling its own fuel, reducing the need for new fuel to be mined and demonstrating the efficient and safe use of high temperature molten systems – those ideally suited for Thorium Fission. The IFR program was a huge success, demonstrating the feasibility of closed fuel cycles for fission machines. The IFR program also provided valuable data on the behavior of fast-neutron-spectrum fission burners, which are critical components of modern fission technology. And, true to form. this program also suffered at the hands of it’s competition with the program being cancelled 3 years before it was completed in 1994 by Clinton and his oil cronies. Ironically, at the same time that excuses where being pushed through Congress to defund the program by Clinton and Energy Secretary Hazel R. O’Leary, O’Leary herself awarded the lead IFR scientist, Dr. Yoon Chang of Argonne Labs, Chicago(9) with $10,000 and a gold medal, with the citation stating his work to develop IFR technology provided “improved safety, more efficient use of fuel and less radioactive waste.”

    “My children were wondering, Why are they are trying to kill the project on the one hand and then giving you this award?” Chang said with a chuckle. “How ironic. I just cannot understand how a nation that created atomic energy in the first place and leads the world in technology in this field would want to take a back seat on waste conversion,” Chang said. “I also have confidence in the democratic process that the true facts and technological rationale will prevail in the end.” Dr. Chang during an interview published 8 February 1994 by Elaine S. Povich(10), then a Chicago Tribune Staff Writer(11).

    Despite these setbacks, there has been a resurgence of interest in Molten Salt Fission Energy in recent years, with a number of programs and initiatives being developed around the world. In France, the National Centre for Scientific and Technical Research in Nuclear Energy( CRNC ) is working on a number of projects related to this technology, including the development of a prototype fission burner. In Switzerland, ETH Zurich (home of Einstein’s work on E=mc^2) is also exploring the potential of Molten Salt Fission Energy, with a number of projects underway.

    There are also a number of other countries that are actively pursuing Molten Salt Fission Energy, including the Czech Republic, Russia, Japan, China, the United States, Canada, and Australia. Each of these countries has its own unique approach to the technology, and is working to advance the state of the art in different ways.

    In conclusion, the history and development of Molten Salt Fission Technology powered by Thorium is a fascinating subject that highlights the innovations and advancements in the field of nuclear energy. From the “Atoms for Peace” program initiated by President Dwight Eisenhower, which attracted prominent scientists like Dr. Alvin Weinberg and Dr. Eugenie Wigner, to the efforts of Hyman Rickover to redirect public funds away from the technology, this technology has faced numerous challenges along the way. The introduction of Linear Non Threshold (LNT) and As Low as Reasonably Achievable (ALARA) by the Rockefellers in an effort to stop the growth of nuclear energy and the fraudulent work of Professor Hermann Muller have also played a significant role in the history of this technology.

    Despite these challenges, the potential benefits of using Thorium as a fuel source for fission burners are significant. The technology is considered safer and more efficient than traditional nuclear reactors, and it has the potential to produce much less nuclear waste. Additionally, the abundance of Thorium on Earth makes it a more sustainable source of energy than other options, such as uranium.

    While much work remains to be done to fully realize the potential of Molten Salt Fission Technology powered by Thorium, the future looks bright. In the next 15 years, we can expect to see significant advancements in the technology in many parts of the world, including new designs and prototypes that will demonstrate the full potential of this technology. And, in our children’s’ children’s future, 50, years and more, we can imagine a world where Molten Salt Fission Technology is the main component of our energy infrastructure, providing clean, safe, and sustainable energy for everyone.

    Totoro knows Atoms

    Links and References

    1. https://thethoriumnetwork.com/2022/10/04/confidence-in-nuclear-energy-the-acceptance-of-evidence-should-replace-traditional-caution/
    2. https://www.patreon.com/posts/dr-alvin-m-of-39262802
    3. https://thethoriumnetwork.com/2022/02/26/episode-8-more-beer-more-bananas-unintended-consequences-chapter-3-part-2/
    4. https://thethoriumnetwork.com/2022/06/02/episode-21-proliferation-not-on-our-watch-unintended-consequences-chapter-8-part-5/
    5. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
    6. “John Kutsch – Using Thorium to Revolutionize the Energy Industry – YouTube.” YouTube, 11 Oct. 2018, https://www.youtube.com/watch?v=AmWvxNeBNlU
    7. https://thethoriumnetwork.com/2022/04/07/episode-13-whats-so-great-about-nuclear-power-unintended-consequences-chapter-6-part-1/
    8. https://en.wikipedia.org/wiki/Integral_fast_reactor
    9. https://www.linkedin.com/in/yoon-chang-a479205/
    10. https://www.linkedin.com/in/elaine-povich-33204813/
    11. https://www.chicagotribune.com/news/ct-xpm-1994-02-08-9402080355-story.html
    12. “Atoms for Peace.” Department of Energy, DOE, www.energy.gov/artificial-intelligence-and-technology-office/atoms-peace.
    13. “Linear No-Threshold Theory.” Wikipedia, Wikimedia Foundation, 17 Nov. 2020, en.wikipedia.org/wiki/Linear_no-threshold_theory.
    14. “As Low As Reasonably Achievable (ALARA) | Radiation Protection | US EPA.” Environmental Protection Agency, 19 Oct. 2020, www.epa.gov/radiation/as-low-reasonably-achievable-alara.
    15. “Hyman Rickover.” Wikipedia, Wikimedia Foundation, 12 Dec. 2020, en.wikipedia.org/wiki/Hyman_Rickover.
    16. “Hermann Joseph Muller.” Wikipedia, Wikimedia Foundation, 18 Nov. 2020, en.wikipedia.org/wiki/Hermann_Joseph_Muller.
    Future Cities Aren't What You Think
    Future Cities Aren’t What You Think

    #Thorium #ThoriumMoltenSalt #ALARA #LNT #Weinberg

  • An Anti-Nuclear Advocate Sees the Light, Changes Their Ways, Wants to Help Others Change Also

    By Anonymous

    As an anti-nuclear advocate who has come to support nuclear energy, I understand that many others in the anti-nuclear community may be hesitant to reexamine their beliefs. However, I believe that it is important for all of us to be open to new information and to consider all of the available evidence before making decisions.

    Success?

    To help other anti-nuclear advocates take the time to learn about nuclear energy and potentially switch to supporting it, I recommend designing an awareness campaign that focuses on the following:

    1. Highlighting the potential benefits of nuclear energy: There are several compelling reasons why nuclear energy is an excellent choice for our energy mix. For example, it is a low-carbon source of electricity that does not emit greenhouse gases or other pollutants. It is also reliable, with plants capable of operating at high capacity for extended periods of time.
    2. Addressing common misconceptions about nuclear energy: I have found that many people who are opposed to nuclear energy simply lack the appropriate knowledge about issues such as safety, waste management, and cost. It is important to address these concerns head-on and provide accurate information about the measures that are in place to address them. Misinformation and misconceptions kill many ideas.
    3. Encouraging open-mindedness and critical thinking: It is important to encourage anti-nuclear advocates to approach the topic of nuclear energy with an open mind and to be willing to consider all of the available evidence. This may involve encouraging them to read reports from reputable organizations, watch documentaries or talks by experts in the field, or participate in discussions with people who have different viewpoints.
    4. Providing a platform for dialogue: One way to encourage open-mindedness and critical thinking is to provide a platform for respectful dialogue and debate. This could involve hosting events or online forums where people with different viewpoints can discuss the pros and cons of nuclear energy in a respectful manner.

    By focusing on these key areas, I believe that it is possible to help other anti-nuclear advocates take the time to learn about nuclear energy and potentially switch to supporting it.

    #GotThorium

  • The Secret to Success in this Sector is to Be Passionate

    Featuring Başkani Gül GOKTEPE, Nutek Inc, Türkiye.

    NÜKAD BAŞKANI GÜL GÖKTEPE:
    “BU SEKTÖRDE BAŞARININ SIRRI, TUTKULU OLMAK”

    NÜKAD CHAIRMAN GÜL GÖKTEPE:
    “THE SECRET TO SUCCESS IN THIS INDUSTRY IS TO BE PASSIONATE”

    President / Başkani Gül GÖKTEPE, Nutek Inc, and Chapter President, Women in Nuclear, Türkiye

    Tarih boyunca devrim niteliğinde buluşlarıyla çok sayıda kadın insanlığın gelişimine katkı sağlayan sayısız başarıya imza atarken, bu başarıların çoğu gölgede kaldı. Bilim, teknoloji, mühendislik ve matematik alanlarında çalışan kadınlara yönelik asırlardır var olan ve Einstein’ın “atom çekirdeğini parçalamaktan daha zordur” dediği ön yargıların da bunda etkisi büyük oldu.  Yaşadıkları dönemin önüne geçmeyi başaran bilim kadınları ise halen günümüze ışık olmaya devam ediyorlar. Radyolojiden kanser tedavilerinde kullanılan radyoterapiye kadar çok sayıda alanın temelini oluşturan, iki Nobel ödüllü Polonya asıllı Kimyager ve Fizikçi Marie Curie, nükleer füzyon konusundaki buluşları ile tarihe geçmeyi başaran Avusturyalı Fizikçi Lise Meitner, nükleer endüstriye kazandırdığı teknolojilerle ‘elementlere hükmeden kadın’ diye tanımlanan Rus nükleer fizikçi Zinaida Yerşova nükleer alanda ‘ilham kaynağı’ olan önemli isimler.

    While many women have achieved countless successes that have contributed to the development of humanity with their revolutionary inventions throughout history, most of these successes have been overshadowed. The prejudices against women working in the fields of science, technology, engineering and mathematics, which have existed for centuries and that Einstein said “it is harder than splitting the atomic nucleus”, had a great effect on this. The women of science who managed to get ahead of the period they lived in still continue to be the light of today. Two Nobel laureates, Polish-born Chemist and Physicist Marie Curie, which forms the basis of many fields from radiology to radiotherapy used in cancer treatments, Austrian Physicist Lise Meitner, who managed to go down in history with her discoveries on nuclear fusion, Russian nuclear physicist who is defined as “the woman who rules the elements” with the technologies she brought to the nuclear industry. Zinaida Yerşova is an important name in the nuclear field who is an ‘inspiration’.

    ROL MODELLERİN ROLÜ

    Zorlu koşullara göğüs gererek, inandığı şeyden vazgeçmeyen cesur ve güçlü kadınların ‘yaşanabilir bir dünya için’ mücadeleleri bugün de devam ediyor. Ancak, hem ortaöğretim hem de yükseköğretimde kadın sayısındaki artışlara rağmen, halen “STEM” adı verilen bilim, teknoloji, mühendislik ve matematik alanlarında yeterince temsil edilmiyorlar.  Uluslararası Atom Enerjisi Ajansı’na (IAEA) göre gençler meslek seçimi yaparken, toplumun bir bilim insanının neye benzediğine dair klişe bakış açılarından ve önyargılarından çok etkileniyorlar. Özellikle nükleer alanda rol modellerin, gençlerin tercihinde önemli rol oynadığına dikkat çekiliyor. Türkiye’de de son yıllarda başarılı bilim kadınları, ilham veren hikâyeleri ve yürüttükleri projelerle pek çok gence ilham kaynağı oluyorlar. Radyolojiden çevreye, sağlıktan tarıma, güvenlikten iklim değişikliğine kadar farklı alanlarındaki örnek çalışmalarıyla nükleere yönelik mitlerin ve ön yargıların önüne geçmeyi de başarıyorlar.

    THE ROLE OF ROLE MODELS

    The struggle of brave and strong women, who do not give up on what they believe in by enduring difficult conditions, continues today for a livable world. However, despite the increases in the number of women in both secondary and higher education, they are still underrepresented in the so-called “STEM” fields of science, technology, engineering and mathematics. According to the International Atomic Energy Agency (IAEA), when choosing a career, young people are influenced by society’s stereotypical viewpoints and prejudices about what a scientist looks like. It is noted that role models, especially in the nuclear field, play an important role in the choice of young people. In recent years, successful women scientists in Turkey have been a source of inspiration for many young people with their inspiring stories and projects. With their exemplary work in different fields from radiology to the environment, from health to agriculture, from security to climate change, they also succeed in preventing myths and prejudices about nuclear.

    Türkiye Red Map
    Türkiye

    SORUNLAR İÇİN ORTAK MÜCADELE

    Avrupa Nükleer Araştırma Merkezi CERN’de önemli çalışmalara imza atan, uzay radyasyonu ve uzay fiziği konularında uluslararası başarılara sahip, “Dünyanın bilime, bilimin kadınlara ihtiyacı var” mottosu ile verilen ‘Uluslararası UNESCO Yükselen Yetenek Ödülü’nü 2017 yılında alan Prof. Dr. Bilge Demirköz, önemli rol modellerden biri. Türkiye’nin ilk ‘Parçacık Radyasyonu Test Altyapısı Projesi’ şu anda onun liderliğinde sürdürülüyor.  Demirköz, bir yandan da gençleri bilim dünyasına teşvik edecek projelere katılıyor, konferanslar veriyor, sergiler düzenliyor.  Demirköz,  kadınları bilime teşvik etmenin önemini şöyle anlatıyor: “Dünyanın yükleri ve problemleri artıyor. Bu problemleri çözmek için güce ihtiyacımız var. Bu gücün yüzde 50’sini kadınlar oluşturuyor. Küreselleşen dünyada ise kadının geride kaldığı toplumlar gelişemez. Bu nedenle hem problemleri hep birlikte çözmek hem de kadınların gelişimini desteklemek için kadınları bilime daha çok teşvik etmeliyiz.”

    COMMON FIGHTING FOR PROBLEMS

    Having carried out important studies at the European Nuclear Research Center, CERN, having international achievements in space radiation and space physics, and receiving the “International UNESCO Emerging Talent Award” in 2017, given with the motto “The world needs science and science needs women”, Prof. Dr. Bilge Demirköz is one of the important role models. Turkey’s first ‘Particle Radiation Test Infrastructure Project’ is currently under his leadership. Demirkoz also participates in projects that will encourage young people to the world of science, gives conferences and organizes exhibitions. Demirköz explains the importance of encouraging women to science as follows: “The burdens and problems of the world are increasing. We need power to solve these problems. Women make up 50 percent of this power. In the globalizing world, societies where women are left behind cannot develop. For this reason, we should encourage women to science more, both to solve problems together and to support the development of women.”

    “The world needs science and science needs women.”

    Prof. Dr. Bilge Demirköz, Ankara, Turkey
    “The world needs science and science needs women” – Prof. Dr. Bilge Demirköz,, Ankara, Turkey

    TÜM DÜNYADA BİTKİLERDE VERİM ARTIŞI

    Türkiye’de yürüttüğü sayısız başarılı tarım projesinin ardından IAEA’da Nükleer Bilimler ve Uygulamalar Bölümü’nde ‘Bitki Islahçısı ve Genetikçi’ olarak çalışan Türk bilim insanı Ziraat Mühendisi Fatma Sarsu, ‘rol model’ kadınlardan biri.  Sarsu, IAEA’nın sitesinde çok sayıda gence ilham verecek hikâyesini şöyle anlatıyor: “Babamın çiftliğinde büyüdüm. Onun ekinlerine duyduğu sevgiyi, onlara nasıl baktığını izlemek beni tarımda çalışmaya ikna etti. Ürün ve mutasyon ıslahını incelemek, mahsul verimliliğini nasıl artıracağımızı öğrenmenin en hızlı yolu olarak ortaya çıktı. IAEA’da bitki ıslahı ve genetiği üzerinde çalışmak, tüm dünyada tarım ürünleri verimliliğini artırmak gibi daha da büyük bir çiftlik verdi bana.  Her gün profesyonel bir tarım bilimcisi olarak insanlığın yararına çalıştığımı bilmek bana büyük mutluluk veriyor.”

    INCREASED PRODUCTION OF PLANTS ALL OVER THE WORLD

    Agricultural Engineer Fatma Sarsu, a Turkish scientist working as a ‘Plant Breeder and Geneticist’ in the Nuclear Sciences and Applications Department of the IAEA, after numerous successful agricultural projects she carried out in Turkey, is one of the ‘role model’ women. Sarsu tells his story that will inspire many young people on the IAEA website: “I grew up on my father’s farm. Watching his love for his crops and how he looked after them convinced me to work in agriculture. Studying crop and mutation breeding has emerged as the fastest way to learn how to increase crop productivity. Working on plant breeding and genetics at the IAEA has given me an even bigger farm to increase crop productivity around the world. It gives me great pleasure to know that every day I work for the benefit of humanity as a professional agronomist.”

    Fatma (Demir) Sarsu
    Fatma (Demir) Sarsu

    YAŞAMI İYİLEŞTİRME SORUMLULUĞU

    Türkiye’nin çeşitli dönemlerdeki nükleer teknoloji transferi ve nükleer santral kurma hazırlık süreçlerine yakından tanıklık eden Türkiye’de “Nükleer Alanda Kadınlar” (NÜKAD) olarak bilinen, “WIN (Women in Nuclear) Global Turkey” Grubu’nun kurucusu ve Başkanı olan B. Gül Göktepe de nükleer alanın öncü isimlerinden. Çekmece Nükleer Araştırma Merkezi için geliştirdiği Göl Projesi, Birleşmiş Milletler (BM) ve Uluslararası Atom Enerjisi Ajansı’nın (IAEA)  en başarılı teknik işbirliği projeleri arasında gösterilen “Karadeniz’in Çevresel Yönetimi” gibi dikkat çeken çevre projelerine imza attı. BM Viyana Daimi Temsilciliği’nde Türkiye’nin ilk kadın Nükleer Ataşesi olarak görev yaptı. “Nükleer alanda çalışmak büyüleyici olduğu kadar zordur da” ifadelerini kullanan Göktepe, “Yaşamı iyileştirmek ve gezegeni korumak gibi büyük sorumluluk taşıyoruz. Ve bu sektörde başarılı olmanın sırrı, tutkulu olmak! Nükleerde kadın sayımız gün geçtikçe artacak, buna inanıyorum. Yapacak çok işimiz var ve dünyanın bize ihtiyacı var!” diyor.

    LIFE IMPROVEMENT RESPONSIBILITY

    Witnessing Turkey’s nuclear technology transfer and nuclear power plant preparation processes in various periods, Gül Göktepe., the founder and President of the “WIN (Women in Nuclear) Global Turkey” Group, known as “Women in the Nuclear Field” (NÜKAD) in Turkey. Gül Göktepe is one of the leading names in the nuclear field. She undersigned remarkable environmental projects such as the Lake Project she developed for the Çekmece Nuclear Research Center and the “Environmental Management of the Black Sea”, which is shown as one of the most successful technical cooperation projects of the United Nations (UN) and the International Atomic Energy Agency (IAEA). She served as Turkey’s first female Nuclear Attaché at the UN Vienna Permanent Mission. Göktepe said, “Working in the nuclear field is as challenging as it is fascinating” and said, “We have a great responsibility to improve life and protect the planet. And the secret to success in this industry is to be passionate! I believe that the number of women in nuclear will increase day by day. We have a lot of work to do and the world needs us!” she says.

    AKKUYU GİBİ UZUN İNCE BİR YOL

    Hayat hikâyesini “Türkiye’nin Akkuyu hikâyesi gibi zorluklarla dolu, çok uzun ve ince bir yol” olarak tanımlayan Göktepe, İngiltere’de atom mühendisliği okuduğunu, ülkeye dönüşünde katıldığı enerji kongresinde, dönemin Enerji ve Tabii Kaynaklar Bakanının ‘600 MW gücündeki ilk nükleer santralin Akkuyu’da kurulacağı ve 1986 yılında işletmeye alınacağı müjdesi’ ile sektöre umutla adım attığını söylüyor.  “O kongreden bu yana nerdeyse 44 yıl geçmiş. Düşünüyorum da o zamandan bu yana nükleerde dünya nerede, biz neredeyiz” diyen Göktepe, Türkiye’nin nükleer santral hikâyesini ise şu sözlerle özetliyor: “Türkiye’nin ilk nükleer santrali Akkuyu Nükleer Santrali projesinde geçmişte öngörülemeyen zorluklar, ertelemeler yaşandı. Şimdi, ne mutlu ki inşaatı tüm hızıyla sürüyor. Kafamda bunca yıllık zorlu mücadeleden sonra değişmeyen bir tek olgu var. O da nükleer teknolojinin dünyanın ve Türkiye’nin geleceği için vazgeçilemez olduğu. Şu anda dünyanın geleceğini tehdit eden en büyük tehlike; iklim değişikliği. Sera gazı emisyonlarını azaltmak için karbonsuz elektrik üretimine ihtiyaç var. O da yenilenebilir enerji, nükleer santraller ve karbon yakalama ve depolamalı fosil yakıtlar (carbon capture and storage-CCS)  olmak üzere sadece üç yoldan elde edilebiliyor.”

    A LONG THIN ROAD LIKE AKKUYU

    Defining her life story as “a very long and narrow road full of difficulties, like Turkey’s Akkuyu story”, Göktepe said that she studied atomic engineering in England, and that she attended the energy congress on her return to the country, and that the Minister of Energy and Natural Resources of the time said that the first nuclear power plant with 600 MW power was Akkuyu. She says that she stepped into the sector with hope with the good news that it will be established in ‘Turkey and will be put into operation in 1986’. “It has been almost 44 years since that congress. Goktepe, who says, “Where are we and where are we in the nuclear field since then,” said, and summarizes Turkey’s nuclear power plant story with these words: “In the past, unforeseen difficulties and delays were experienced in the Akkuyu Nuclear Power Plant project, Turkey’s first nuclear power plant. Now, fortunately, its construction is in full swing. There is only one fact in my mind that has not changed after all these years of hard struggle. That nuclear technology is indispensable for the future of the world and Turkey. The biggest danger threatening the future of the world right now; climate change. Carbon-free electricity generation is needed to reduce greenhouse gas emissions. It can be obtained in only three ways: renewable energy, nuclear power plants and fossil fuels with carbon capture and storage (CCS).

    President of Nutek inc, and Women in Nuclear, Turkey, Gül Göktepe of Istanbul, Turkey was the first women representing Turkey at the IAEA in Vienna, Austria, having also spent time on numerous international nuclear missions, including the Chernobyl and Fukushima incidents. She has published over one hundred and thirty scientific papers and authored many articles related to nuclear power stations, and the Black Sea. She has received numerous awards and fellowships including an international medal, the Black Sea Medal, awarded for outstanding services to protect the Black Sea environment, by UNDP GEF, BSC and BSERP.

    Akkuyu Nuclear Power Station, Turkey
    Akkuyu Nuclear Power Station, Turkey by Rosatom of Russia

    BAŞARILARI DİKKAT ÇEKİCİ

    Hacettepe Üniversitesi Radyasyon Onkolojisi Ana Bilimdalı Radyoterapi Fiziği Programı’ndaki doktora çalışması kapsamında geliştirdiği ‘radyoterapide her hastaya ve bölgeye (meme, tiroid vb.) uyabilecek zırh ve karşı memeyi tedavi alanından uzaklaştıracak sütyen tasarımıyla Hacettepe Üniversitesi ve Hacettepe Teknokent Teknoloji Transfer Merkezi işbirliği ile düzenlenen “Hacettepe Hamle İnovasyon Yarışması”nda 2018 yılında Sağlık Teknolojileri alanında birinci olan Nükleer Enerji Mühendisi Nur Kodaloğlu, alanın genç ve başarılı isimlerinden biri. 2019 yılında Teknofest kapsamında Türk Patent Enstitüsü’nün düzenlediği ISIF 2019- Uluslararası Buluş Fuarı’nda “İkincil Kanser Riskini Azaltan Bir Sütyen” patenti ile ‘bronz madalya’ ile ödüllendirilen ve yeni buluşlar üzerinde çalışan Kodaloğlu kadınların bilime katkısını şu sözlerle vurguluyor: “Farklı meslek gruplarındaki kadınlar toplumun çeşitliliğini yansıtmaktadır. Bugün hem nükleer mühendislik alanında, hem de hastanelerin radyoterapi bölümlerindeki kadın medikal fizikçi ve kadın hekimler ile nükleer tıp, radyoloji bölümlerindeki kadın hekimlerin sayısı azımsanmayacak kadar çok. Yaptıkları yayınlar göz önünde bulundurulduğunda bilime yaptıkları katkının da bir o kadar fazla olduğu görülecektir. Kadınların toplumun nükleer teknolojilere olan güvenini arttırmada da önemli rolleri var.”

    SUCCESSFUL ACHIEVEMENTS

    Organized in cooperation with Hacettepe University and Hacettepe Teknokent Technology Transfer Center, with the armor design that can fit each patient and region (breast, thyroid, etc.) and the bra that will move the opposite breast away from the treatment area, she developed within the scope of her doctoral study in the Radiation Oncology Department of Hacettepe University, Radiotherapy Physics Program. Nuclear Energy Engineer Nur Kodaloğlu, who won the first place in the field of Health Technologies in the Hacettepe Move Innovation Competition in 2018, is one of the young and successful names in the field. Kodaloğlu, who was awarded the ‘bronze medal’ with the patent “A Bra that Reduces the Risk of Secondary Cancer” at the ISIF 2019-International Inventions Fair organized by the Turkish Patent Institute within the scope of Teknofest in 2019 and working on new inventions, emphasizes the contribution of women to science with the following words: “Different professions Today, the number of female medical physicists and female physicians in both nuclear engineering and radiotherapy departments of hospitals, and female physicians in nuclear medicine and radiology departments is substantial. “Women also play an important role in increasing society’s confidence in nuclear technologies.”

    Nur Kodaloglu
    Nur Kodaloglu, MSc. Medical Physicist- Nuclear Engineer

    POZİTİF KATKI SAĞLIYORUZ

    “Teknolojik gelişmeyle paralel nükleer enerjinin kullanıldığı her alanda Türkiye’yi ileriye taşıyacağına inanıyorum” diyen Feride Kutbay, nükleer reaktör güvenliği alanında yaptığı çalışmalarla dikkat çeken başarılı genç bilim insanlarından biri. İstanbul Teknik Üniversitesi (İTÜ) Enerji Enstitüsü’nde Nükleer Araştırmalar Ana Bilim Dalı’nda Araştırma Görevlisi olarak görev yapan Kutbay, Türkiye’de bu alanda yeni iş fırsatlarının da artmaya başladığına dikkat çekerek, şunları ifade ediyor: “Nükleer güç santralini barındıran bir ülke olarak, nükleer reaktörlerin işletilmesi için yetiştirilen uzmanların dışında IAEA standartlarının ülkemizde uygulanmasında görev alacak uzmanlara da ihtiyaç var. Şu anda Rusya’da eğitim gören öğrencilerimizin dışında Türkiye, son birkaç yıldır Milli Eğitim Bakanlığı’na bağlı yurt dışı yüksek lisans bursu ile nükleer alanda yetiştirilmek üzere farklı ülkelere öğrenci gönderiyor. Geleceğe yönelik insan kaynağımızı güçlendiriyoruz. Kadın istihdam oranının artırılması ve kadın profesyonellerin yetiştirilmesine yönelik adımların Türkiye’de gelişmekte olan nükleer sektöre pozitif yönde etki edeceğini düşünüyorum. Kadınlar bu mesleğe enerji ve güç veriyor.”

    WE PROVIDE POSITIVE CONTRIBUTION

    Feride Kutbay, who said, “I believe that it will carry Turkey forward in every field in which nuclear energy is used in parallel with technological development,” is one of the successful young scientists who draw attention with her studies in the field of nuclear reactor safety. Kutbay, who works as a Research Assistant in the Department of Nuclear Research at Istanbul Technical University (ITU) Energy Institute, draws attention to the fact that new job opportunities have started to increase in this field in Turkey, and says: “As a country that hosts a nuclear power plant, In addition to the experts trained for the operation of nuclear reactors, there is also a need for experts who will take part in the implementation of IAEA standards in our country. Apart from our students currently studying in Russia, Turkey has been sending students to different countries to be trained in the nuclear field for the last few years, with a graduate scholarship from the Ministry of National Education. We are strengthening our human resources for the future. I think that steps towards increasing the rate of female employment and training female professionals will have a positive impact on the developing nuclear sector in Turkey. Women give energy and strength to this profession.”

    Feride Kutbay, Nuclear Engineer

    “I believe that it will carry Turkey forward in every field in which nuclear energy is used in parallel with technological development.”

    Feride KUTBAY, Istanbul Institute of Technology. Türkiye
    Gül Göktepe

    First published in Gulnar City 8 July 2020. Reproduced here in English and Turkish.


    Links and References

    1. https://www.gulnarcity.com/m-haber-6082.html?islem=haber&id=6852
    2. http://nutekinc.biz/en/gul-goktepe
    3. https://www.enerjigunlugu.net/goktepe-hem-cevreci-hem-nukleer-karsiti-olamazsiniz-37611h.htm
    4. https://world-nuclear.org/information-library/country-profiles/countries-t-z/turkey.aspx
    5. https://nonproliferation.org/the-black-sea-women-in-nuclear-network/
    6. https://en.wikipedia.org/wiki/Turkey
    7. https://www.linkedin.com/in/b-g%C3%BCl-g%C3%B6ktepe-71420888/
    8. https://en.wikipedia.org/wiki/Marie_Curie
    9. https://en.wikipedia.org/wiki/Lise_Meitner
    10. https://en.wikipedia.org/wiki/Zinaida_Yershova
    11. https://www.linkedin.com/in/bilgedemirkoz/
    12. https://www.iaea.org/newscenter/multimedia/photoessays/women-in-nuclear-science
    13. https://www.linkedin.com/in/fatma-sarsu-71733361/
    14. https://en.wikipedia.org/wiki/Akkuyu_Nuclear_Power_Plant
    15. https://rosatom.ru/en/
    16. https://www.linkedin.com/in/nur-kodaloglu-62582574
    17. https://www.linkedin.com/in/feride-kutbay-2b0943155

    #Turkey #Türkiye #NuclearEnergy #Fission #WomenInNuclear

  • How U.S. Policy Shifted Energy & Technology Hegemony to China

    By James Kennedy, President of ThREEConsulting.com and John Kutsch, Executive Director of Thorium Energy Alliance, October 3, 2022.

    Ordinally appearing in LinkedIn Pulse. Reproduced for educational purposes and with permission.

    The Pentagon recently halted the delivery of F-35 fighter jets when it was discovered that they contained Chinese rare earth components. If the Pentagon would look a little more closely, they would find that Chinese rare earth derived components are ubiquitously distributed throughout all U.S. / NATO weapon systems.

    It isn’t only U.S. weapon systems, China controls global access to rare earth metals and magnets (and other downstream critical materials) for EVs, wind turbines, and most other green- technology.

    However, China’s vision is much more ambitious than controlling the supply-chain for high-tech commodities, they are leveraging their dominance into the clean energy sector. Last month Chinese authorities authorized the startup of what should be considered the world’s only Generation-5 nuclear reactor: a reactor that is inherently safe, non-proliferating, and can consume nuclear waste.

    The goal of Net-Zero, and any potential economic benefits, are entirely under China’s control.

    China’s leadership position in both of these areas can be traced back to irrational policies and legacy prejudices specific to thorium, a mildly radioactive element that is commonly found in heavy rare earth minerals.

    The words that follow, detail the history of how China surpassed the U.S. with its own nuclear technology and displaced its historic leadership position in rare earths.

    A Short History on U.S. Nuclear Development

    In 1962 Nobel Prize Winning scientist Glenn Seaborg responded to President John F. Kennedy’s request for a Sustainable U.S. Energy Plan. The report titled “Civilian Nuclear Power” called for the development and deployment of Thorium Molten Salt Breeder Reactors.

    Glenn T Seaborg 1961
    Glenn T. Seabourg – Nobel Prize winner and adviser to 10 Presidents – knew a thing or two about Atomic Energy

    Abstract
    This overarching report on the role of nuclear power in the U.S. economy was requested by U.S. President John F. Kennedy in March, 1962. The U.S. Atomic Energy Commission was charged with producing the report, gaining input from individuals inside and outside government, including the Department of Interior, the Federal Power Commission, and the National Academy of Sciences Committee on Natural Resources. The study was to identify the objectives, scope, and content of a nuclear power development program in light of prospective energy needs and resources. It should recommend appropriate steps to assure the proper timing of development and construction of nuclear power projects, including the construction of necessary prototypes and continued cooperation between government and industry. There should also be an evaluation of the extent to which the U.S. nuclear power program will further international objectives in the peaceful uses of atomic energy.

    Civilian Nuclear Power, a Report to the President by Glenn T Seaborg, Atomic Energy Commission, U.S.A. 1962

    These ultra-safe reactors are nothing like the legacy reactors that make up today’s Light Water fleet (LWR). When deployed globally, many believe they will be the primary backbone of Green Energy – replacing the existing natural gas dispatchable power that makes up over 70% of the ‘balance-of-power’ in renewable systems.

    Unfortunately, Seaborg’s plan died with Kennedy. The cold-war preference for uranium and plutonium over thorium in the 1960s and 70s, coupled with the 1980s modification to U.S. Nuclear Regulatory Committee (NRC) and International Atomic Energy Agency (IAEA) regulations that also impacted how thorium is classified and processed, led to the termination of the U.S. Thorium Molten Salt Reactor program and, effectively, the U.S. (French and Japanese) rare earth industry.

    Today, China controls the downstream production of rare earth metals and magnets (used in EVs, Wind Turbines and U.S. / NATO weapon systems) and is boldly pursuing Glenn Seaborg’s plan for clean, safe energy. China’s nuclear regulatory authorities have cleared the 2MWt TMSR-LF1, China’s first Thorium Molten Salt Reactor (Th-MSR), for startup. There is no U.S. equivalent program on the horizon.

    TMSR LF1 Cutaway SINAP
    TMSR LF1 Cutaway SINAP

    Considering that the U.S. initially developed this reactor, it begs the question of why China is leading with its commercial development. That requires a bit of a history lesson.

    The goal of harnessing nuclear energy began shortly after World War II. At that time, a number of Manhattan Project scientists were tasked with quickly developing civilian nuclear power. One of the mission goals was to distribute the ongoing cost of producing bomb-making materials across our secretive Manhattan Project campuses onto a ‘civilian’ nuclear energy program. That program eventually morphed into the Atomic Energy Commission and then to the Department of Energy.

    From an accounting standpoint, the DOE’s primary purpose was to divert the balance- sheet cost of our nuclear weapons programs off the military’s books.

    For its entire history, 70% or more of the Department of Energy’s budget has been directed towards nuclear weapons development, maintenance, and research programs (and cleanup funding of legacy Manhattan Project sites). As the budget priorities demonstrate, solving America’s energy needs was never the first priority of the DoE. Accept that reality, and the long history of DoE mal-investment begins to make sense.

    James Kennedy

    Results came quickly. The first reactor designs, still in use today, are essentially ‘first concept reactors’: something more than a Ford Model T, but possibly less than a Model A, as economies of standardization were purposely never attempted in the USA, and therefore the USA never achieved the economies of scale that comes from making only 1 type of reactor model like the French and Japanese do.

    The rollout of Thorium MSRs will be the equivalent of a modern-day automobile (with standardization of parts and licensing, automated assembly-line production and centralized operation permitting).

    Every U.S. Light Water Reactor (LWR) facility is uniquely engineered from the ground up— maximizing its cost. Every permit application is unique. Permit requirements, timelines and outcomes are fluid. The timeline from initial funding for permitting to buildout can take decades. This equates to tying up tens of billions of dollars in financial commitments over a very long time for an uncertain outcome (a number of reactor projects were terminated during the buildout phase, with some near completion). There is an incentive to drag projects out because the EPC builders of the plan are not the operators, so they have to make all their money in the build. For example, the most recent U.S. nuclear buildout is 8 years behind schedule and at twice the estimated cost. This is a recipe for failure.

    Plant Vogtle

    The original LWR designs, largely developed by Alvin Weinberg, boiled water under immense pressure to turn a shaft, similar to the turbines of a coal fired power plant. The use of water as a coolant is one of the largest contributors to LWR system complexity, risk and costs.

    Water’s liquid phase range at normal pressure is 1 to 99°C. Water’s natural boiling temperature does not generate sufficient pressure to economically operate traditional steam turbines so all LWR type reactors use high pressure to force water to remain liquid at higher temperatures. The need to contain coolant failures in such a high-pressure operating environment greatly effects the safety and cost of the entire system. All water-cooled reactors have an inherent design risk, no matter how small, built in.

    Weinberg knew there must be a better design, but government and military support rushed in to prop up the development of the Light Water Reactor design. Admiral Hyman Rickover was the leading advocate, quickly developing the first nuclear-powered submarine. The U.S. Army also got in the game, developing a prototype mobile field reactor. The Air Force, feeling left out, looked to Alvin Weinberg to develop a nuclear-powered aircraft.

    The Air Force Reactor project required that he develop something entirely new; keeping in mind that this reactor would operate inside an airplane with a crew and live ordinance. These are truly remarkable constraints in terms of weight, size, safety, and power output. Weinberg’s insight led to a reactor that used a liquid fuel instead of solid fuel rods. It was simply known as Alvin’s 3P reactor, all he needed was a Pot, a Pipe and a Pump to build his new reactor design.

    High Temperature Reactor Experiment 3 ARE
    High Temperature Reactor Experiment 3

    Elegant in its simplicity, its safety was based on physics and geometry – not pumps, values, backup generators and emergency protocols.

    The Air Force Reactor program was able to prove out all requirements of the program. It was / is possible to build a nuclear-powered bomber aircraft and keep the crew ‘reasonably safe’. However, the development of nuclear-launch capable submarines and the Inter-Continental Ballistic Missile supplanted the need for a nuclear bomber.

    The original Air Force Reactor Experiment evolved into the Molten Salt Reactor Experiment (MSRE) developed at Oak Ridge National Lab. This moderated reactor operated for 19,000 hours over 5 years. The reactor was designed to run on a Thorium-uranium mixed fuel. Prior to termination of the project, all operational, safety, material science, and corrosion issues were resolved.

    More importantly, the MSRE project proved that you could build a revolutionary nuclear reactor that eliminated all of the inherent safety concerns of the LWR while minimizing the spent fuel issue (what some people call nuclear waste).

    The new reactor, commonly known as a Molten Salt Reactor (MSR), used heated salt with a liquid-to-boil temperature range that can exceed 1000°C (a function of chemistry), to act both as coolant and fuel. The recirculation of the liquid fuel/coolant allowed for the fuller utilization (burn up) of the actinides and fission products. The salt’s higher temperature operation that did not need water for cooling, eliminated the need to operate under extreme pressures.

    The Molten-Salt Reactor Experiment

    This salt coolant cannot overheat, and meets the definition of having inherent safety – MSR’s are inherently safe reactors that eliminate scores of redundant systems, significantly increasing the simplicity of the overall system while lowering risks and cost and increasing its safety profile.

    Another advantage is that MSR’s higher operating temperatures allow it to utilize liquid CO2 (or other high compression gases), thus eliminating H2O steam from the system. Moving away from the Rankine turbine system to much smaller and more efficient Brayton turbines delivers a much higher energy conversion at lower costs. The real promise of the MSR was that it produced process heat directly, for hydrogen, desalination, fertilizer, steel production – avoiding inefficient electricity production all while utilizing 100% of the heat energy directly.

    Another beneficial feature is the reduced quantity and timeframe of storage requirements for spent fuel (aka: nuclear waste). Inherent to their design, MSRs use-up nuclear fuel far more efficiently than LWRs, less than 1% of the original fuel load can end up as spent fuel, and due to acceleration of decay under the recirculation of the fuel/coolant load the residual spent fuel decays to background (radiation levels equal to the natural environment) in as little as 300 years.

    LWRs utilize about 3% of the available energy in solid fuels and the spent fuel does not decay to background levels for tens of thousands of years.

    The most promising MSR design feature was found to be that fission criticality (a sustained chain reaction) is self-regulating due to the reactor’s geometry and self-purging features that dumped the fuel/coolant into holding tanks and regulated fission rates (again, based on geometry) if the reactor exceeded design operating temperatures. These features made a reactor “meltdown” impossible and “walk-away safe”.

    Because the salt coolant has such a high liquid phase the system can be air cooled (in any atmosphere: the artic, the desert , even versions for space). The elimination of water from the system eliminates the primary failure-point of all conventional nuclear reactors, including explosive events that can occur with water cooled reactors.

    NOTE: LWR reactor explosions are due to disassociation of water into hydrogen and oxygen when exposed to Zirconium at high temperatures during coolant system failure. The zirconium fuel casings act as a catalyst, causing a massive rapid atmospheric expansion. This atmospheric expansion was the cause of the explosive event associated with the Fukushima disaster.

    The elimination of any high-pressure hydrogen event excludes the potential for widespread radiation release and thus, the need for a massive containment vessel.

    Alvin Weinberg’s reactor design also solved another challenge of that time. Prior to the mid- 1970s the U.S. government believed that global uranium resources were very scarce. This new reactor, fueled with a small amount of fissile material added to the Thorium salt, could breed new fuel. In fact, it turned out that the reactor could also be used to dispose of weapons grade plutonium or even spent fuel (stockpiled nuclear waste).

    ABSTRACT
    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power.

    ORNL – Thorium MSRs From Using Dismantled Weapons, 1991

    Unlike natural mined Uranium, which needed intensive processing to concentrate the fissile U235, Thorium is widely abundant and a byproduct of phosphate, titanium, zircon and rare earth ores. Thorium can be used in a nuclear reactor after minimal processing, all benefits that were unheeded in the 60s and 70s.

    Since MSRs run at a much higher temperature than LWRs, the greatest benefit would be the direct utilization of thermal energy for industrial processes requiring thermal loads (allowing for the carbon free production of steel, cement and chemicals that make up nearly 25% of all CO2 emissions). Possibilities seemed endless.

    Glenn Seaborg’s 1962 report to President Kennedy devised a national plan for sustainable civilian nuclear power. Evaluating the relative safety, efficiency, and economy of the Th-MSR vs. the LWR, Seaborg recommended that the U.S. phase out LWRs in favor of Alvin Weinberg’s Th- MSR Thorium “breeder reactor”.

    So why didn’t this reactor design prevail? Considering its economic advantages, the Th-MSR would cause the phase out of the existing nuclear fleet and would be more cost competitive than coal or natural gas (and could replace petroleum via a nuclear-powered Fischer Tropes process), it is no wonder that the reactor was rejected by the prevailing political-economy of cold-war industrialism and what was primarily a hydro-carbon based economy.

    The production cost for these reactors was a key concern. The relative cost of assembly line built MSRs reactor would be a fraction of traditional LWRs (these are small modular reactors). As such, MSRs could bring installed cost per megawatt in line with coal fired power plants.

    The construction cost advantages are numerous: inherent safety based on geometry (translates into simplicity of design and construction), small, modular, assembly-line built, roll-off permitting, air cooled (eliminating the primary critical failure risk of LWRs and, thus the possibility for a wide-spread radiation event), no need for a massive containment vessel, and small Bryton turbines.

    The Thorium fuel would be a byproduct of rare earths (no enrichment is necessary). Rare earths would be a byproduct of some other mined commodity.

    Regardless of the economic opposition, there was also a geopolitical conflict. Fueled with Thorium, the MSR did not produce plutonium (fissile bomb making materials) or anything else that was practically usable for the production of nuclear weapons. The reactor was highly proliferation resistant—and who would not like that?

    The Nixon Administration, for one. American politics in 1968 were largely influenced by the U.S.’s relative status in the nuclear weapons arms race with Russia. Nixon, a nuclear hawk, killed the MSR program and committed the country to the development of fast spectrum breeder reactors (the program was a total failure), circa 1972.

    As early as 1970 a new, safe, clean, cost-efficient, and self-generating energy economy was technically possible but was sacrificed to the objectives of the cold war and preservation of the existing LWR fleet.

    If the U.S. had followed Seaborg’s advice the entire world could be pulling up to the curb of Net-Zero today and U.S. energy hegemony would be preserved long into the future.

    Instead, today, China is leading the world in the development of Thorium fueled reactors and Thorium based critical materials. They intend to use it as a geopolitical tool: the Chinese version of “Atoms for Peace”. This would end U.S. energy hegemony.

    Sadly, most Americans can’t fathom how that would impact their standard of living and create a domestic energy source that would cement their position in the world.

    But the story of how Thorium politics and policy derailed U.S. energy and national security interests does not end there.

    The Story of Rare Earths

    A decade later, the production and proliferation of nuclear weapons material became an international matter of concern. In 1980 the NRC and IAEA collaborated on regulations to ratchet down on the production and transportation of uranium. The regulatory mechanism 10 CFR 40, 75 applied the rules and definitions specific to the uranium mining industry to all mining activity, using the 1954 Atomic Energy Act terminology of nuclear “source material” to define the materials to be controlled.

    Uranium, plutonium and Thorium are all classified as nuclear fuel: source material. However, Thorium cannot be used for nuclear weapons (Thorium is fertile, not fissile).

    James Kennedy

    This caused a new and unintended problem. At the time, nearly 100 percent of the world’s supply of heavy rare earths contained Thorium in their mineralization and were the byproduct of some other mined commodity. Consequently, when these commodity producers extracted their target ores (titanium, zirconium, iron, phosphates, etc.) they triggered the new regulatory definition of ‘processed or refined ore (under 10 CFR 40)’ for these historical rare earth byproducts, causing the Thorium-bearing rare earth mineralization to be classified as “source material”.

    In order to avoid the onerous costs, regulations, and liabilities associated with being a source material producer these commodity producers disposed of these Thorium-bearing resources along with their other mining waste and continue to do so today.

    Currently, in the U.S. alone, the annual quantity of rare earths disposed of to avoid the NRC source material regulations exceeds the non-Chinese world’s demand by a factor of two or more. The amount of Thorium that is also disposed of with these rare earths could power the entire western hemisphere if utilized in MSRs.

    The scale of this potential energy waste dwarfs the collective efforts of every environmentalist on a global basis (including all of the World Economic Forum programs being forced on farmers and consumers across the globe).

    As a result, all downstream rare earth value chain companies in the U.S. and IAEA compliant countries lost access to reliable supplies for these rare earth resources.

    Capitalizing on these regulatory changes, China quickly became the world’s RE producer.

    World Rare Earth Production

    During the 1980s, China increased its leverage by initiating tax incentives and creating economically favorable manufacturing zones for companies that moved rare earth technology inside China.

    U.S., French and Japanese companies were happy to off-shore their technology and environmental risks (mostly related to Thorium regulations). The 1980 regulatory change and China’s aggressive investment policies allowed China to quickly acquire a foothold in metallurgical and magnet capabilities.

    For example: China signed rare earth supply contracts with Japan that required Japan to transfer rare earth machinery and process technology to mainland China while establishing state-sponsored acquisition strategies for targeted U.S. metallurgical and magnetic manufacturing technologies.

    By 1995 the U.S. had sold its only NdFeB magnet producer, and all of its IP, to what turned out to be Deng Xiaoping’s family.

    In just two decades China moved from a low value resource producer to having monopoly control over global production and access to rare earth technology metals.

    By 2002 the U.S. became 100% dependent on China for all post-oxide rare earth materials. Today, China’s monopoly is concentrated on downstream metallics and magnets. In 2018, Japan, the only country that continued to produce rare earth metals outside of China, informed the U.S. government that they no longer make “new” rare earth metals.

    Japan stated the reason for terminating all new rare earth metal production is “China controls price”.

    Thorium policy was the leading culprit in America’s failure to lead the world in the evolution of the rare earth dependent technologies. From its powerful vantage point, China was able to force technology companies to move operations inside China. From a practical standpoint all past and future breakthroughs in rare earth based material science and technology migrate to China.

    Cumulative Patent Deficit USD vs China
    Cumulative Patent Deficit USD vs China

    The best example of this is Apple. Because the iPhone is highly rare earth dependent, Apple was forced to manufacture it in China. In January 2007 Apple introduced its revolutionary iPhone. By August of the same year high quality Chinese knockoffs were being produced by a largely unknown company named Huawei. By 2017 Huawei was outselling Apple on a worldwide basis.

    This story is not uncommon. It is typical of what happens to Western companies who move manufacturing inside China. Apple knew this but had no choice: developing a domestic rare earth value chain was impossible for any single company, industry, or even country by this point in the game.

    Today China’s monopoly power allows them to control the supply chain of the U.S. military and NATO defense contractors.

    From its diminished vantage point, the Pentagon is somehow unable to understand that China’s monopoly is a National Program of Industrial and Defense Policy.

    Instead, the Pentagon pretends that this is a problem that can be solved by ‘the free market’, naively betting U.S. national security on a hodgepodge of junior rare earth mining ventures with economically questionable deposits, no downstream metal refining capabilities and no access to the critical heavy rare earths.

    The Pentagon twice bet our national security on a geochemically incompatible deposit in California. The first time was in 2010. The Pentagon was forewarned that the deposit controlled by Molycorp, was incompatible with U.S. technology and defense needs, due to its lack of heavy rare earths, and that its business plan was “unworkable”. The company was bankrupt in just 5 years.

    In 2020, despite the same deposit’s intractable deficiencies, Chinese ownership and a commitment to supply China, the Pentagon backed a venture capital group ‘developing’ the deposit under the name MP Materials. The new company has made the same unfulfillable promises as its predecessor but further domestic downstream capability into metallics is unlikely.

    MP may remain profitable as long as it continues to sell concentrate and oxides into China, but profitable downstream refining into metallics / magnets is not possible when accounting for China’s internal cost, scale and subsidy advantages (and control over price).

    The Pentagon, like so many other investors, fails to accept the reality of China’s monopoly.

    It is both an economic monopoly, and a geopolitical monopoly.

    Consequently, there have been over 400 bankruptcies in rare earth projects since 2010. Only two western controlled rare earth mines went into production: Molycorp, mentioned above, and Lynas, the Australian company Lynas. Lynas’s success is mostly due the current environment of higher prices (ultimately under China’s control) and a modestly superior rare earth chemistry when compared with the Molycorp Mt. Pass deposit. Lynas survived the 2015 downturn through direct subsidies form the Japanese government, price supports and debt forgiveness from its customers and investors.

    Today the U.S. and all western governments find themselves outmaneuvered in rare earths (and other critical materials), the green economy and Thorium nuclear energy.

    China is leading the world in the development of Thorium MSRs. Their first two-megawatt prototype reactors was recently cleared for startup (August, 2022). China’s MSR program was built on massive direct investment by the Chinese government and the direct transfer of technology and technical support by the U.S. Department of Energy.

    China’s first to market strategy can be expected to conform to their tendency to vertically and horizontally monopolize industries, like rare earths. As such, China is poised to control the global roll out of this technology—displacing the U.S. as the global energy hegemon.

    Because the U.S. failed to rationalize Thorium policy it has lost control of its destiny in rare earths and the future of safe, clean, affordable, and sustainable nuclear energy.

    Unchallenged, China will be the global champion of net-zero energy.

    What are the domestic obstacle to achieving Thorium MSR?

    Opposition is directly linked to the cold war policies of the past and the intersection of legacy energy producers (LWR nuclear, coal, natural gas and petroleum) and renewable energy producers. These energy sectors individually and collectively are the political constituents of the DoE. So, despite the opposing interests between each of these energy sectors, the threat of Th-MSR expresses itself as DoE opposition (that is beginning to change).

    The other problem with Th-MSR development is the regulatory environment. Regulations are more about protecting legacy interests than public safety. In nuclear regulation it is all about protecting the legacy fleet from new entrants.

    For example, the company Nuscale spent over $600 million, over a decade, to certify a new nuclear reactor design. This expense was not to build a reactor. It was the regulatory cost of permitting a new reactor design that (highly conforms to existing LWR designs).

    What people overlook is that the real cost and risk in new reactor design is a function of time, money and investor expectations.

    In the case of Nuscale, the regulatory and construction cost of a new reactor will be in the multi-billion-dollar range, with over a decade of investor money tied up in the highly speculative investment (speculative in regulatory outcomes and customer orders against existing and alternative technologies) makes this the highest investment risk imaginable.

    Accounting for the magnitude of these risks and return expectations, this type of investment is at the outer bounds of what is achievable — in the absence of a monopoly. That is why public investment was always necessary in the nuclear industry. China understands this and has acted accordingly.

    What are the domestic obstacles to a domestic rare earth value chain?

    The current rare earth issue has not been a mining issue but rather a regulatory issue. The U.S. continues to mine enough rare earths, as the byproduct of some other commodity, to exceed the entire non-Chinese world demand. These resources would quickly become available if the U.S. rationalized its Thorium policy.

    The larger downstream problems resulting from China’s massive overinvestment and negligible return requirements in its rare earth industry have yet to express themselves, as the U.S. government blindly funds non-compatible, non-viable, non-economic downstream projects.

    Without a production tax credit to off-set Chinese subsides, all of these projects will fail.

    Balancing the comparative cost of capital and investor return expectation also must be answered.

    Solutions

    There are potential solutions. For rare earths there is a production tax credit bill that could off- set China’s generous subsidies, zero-cost capital and production cost advantages (comparative labor & environmental costs). There may also soon be proposed legislation to solve the Thorium problem. This same proposal would also provide a funding and development platform for a U.S. based Thorium MSR reactor industry.

    There are solutions, but time is running out.


    To learn more about advancing U.S. interests in the development of MSRs and ending China’s rare earth monopoly please visit the ThoriumEnergyAlliance.com or ThREEConsulting.com.


    Authors

    James Kennedy is an internationally recognized expert, consultant, author, and policy adviser on rare earths and Thorium energy.

    John Kutsch is the executive director of Thorium Energy Alliance, an organization dedicated to the advancement of Thorium for power and critical materials applications.


    References and Links

    1. http://threeconsulting.com/
    2. https://www.linkedin.com/in/james-kennedy-5622bb50/
    3. https://thoriumenergyalliance.com/
    4. https://www.linkedin.com/in/kutschenergy/
    5. https://www.linkedin.com/pulse/how-us-policy-shifted-energy-technology-hegemony-china-james-kennedy/
    6. https://www.politico.com/news/2022/09/07/pentagon-suspends-f-35-deliveries-china-00055202
    7. https://en.wikipedia.org/wiki/Glenn_T._Seaborg
    8. https://pastdaily.com/2018/10/29/october-29-1961-dr-glenn-seaborg-has-a-word-or-two-about-nuclear-energy-meet-the-press-past-daily-reference-room/
    9. https://www.osti.gov/servlets/purl/1212086
    10. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
    11. https://www.augustachronicle.com/story/news/2021/11/04/georgia-power-nuclear-reactors-plant-vogtle-cost-doubles-energy-costs/6286729001/
    12. https://en.wikipedia.org/wiki/Hyman_G._Rickover
    13. https://energyeducation.ca/encyclopedia/Aircraft_reactor_experiment
    14. https://en.wikipedia.org/wiki/Molten-Salt_Reactor_Experiment
    15. https://www.youtube.com/watch?v=tyDbq5HRs0o
    16. https://www.nuclear-power.com/nuclear-engineering/thermodynamics/thermodynamic-cycles/rankine-cycle-steam-turbine-cycle/
    17. https://www.energy.gov/ne/articles/sandia-researchers-deliver-power-grid-new-brayton-cycle-technology
    18. https://threeconsulting.com/mt-content/uploads/2021/04/th_msrs_heufrom_dismantled_weapons.pdf
    19. https://web.archive.org/web/20151107033818/https:/inldigitallibrary.inl.gov/sti/2664750.pdf
    20. https://www.nrc.gov/reading-rm/doc-collections/cfr/part075/index.html
    21. https://threeconsulting.com/mt-content/uploads/2021/04/chiarepatent.pdf
    22. https://en.wikipedia.org/wiki/Deng_Xiaoping
    23. https://www.congress.gov/115/crpt/hrpt676/CRPT-115hrpt676.pdf
    24. https://threeconsulting.com/mt-content/uploads/2021/04/sme-rareearthsdeceptionwebv.pdf
    25. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
    26. https://www.nextbigfuture.com/2022/08/chinas-2-megawatt-molten-salt-thorium-nuclear-reactor-has-start-up-approval.html
    27. https://threeconsulting.com/mt-content/uploads/2021/04/casdoetech.pdf
    28. https://www.congress.gov/bill/117th-congress/house-bill/5033/text?r=164&s=1

    #rareearths #nuclearenergy #nationalsecurity #nationaldefense #china #criticalminerals #departmentofenergy #departmentofdefense #EV #netzero #netzerocarbon #greentech #geopolitics #renewableenergy #cobalt #nickel #graphite #lithium #weapons #defensetechnology #mining #miningindustry #miningnews #greensteel #neodymium #terbium #pentagon #hegemony #monopoly #intellectualproperty #windenergy #solarenergy #hydrogen #thorium #thoriumenergyallianc #energy #scienceandtechnology #aviationindustry #aviationnews #airforce

  • Safeguards for the Lithium Fluoride Thorium Reactor: A Preliminary Nuclear Material Control and Accounting Assessment – by Oak Ridge National Laboratories – Publication ORNL/TM/2022/2394

    The most modern reproduction and replication of the work of the 1960’s undertaken by Flibe Energy Inc. is reviewed by Oak Ridge National Laboratories in a private public partnership. (ORNL is managed by UT-Battelle).

    Today we spotlight the most recent production from Oak Ridge National Laboratories in Tennessee, USA, (ORNL). The report is all about Molten Salt Fission Technology Powered by Thorium. This concise 54 page report is akin to the ORNL report produced 44 years ago in August 1978, entitled Molten-Salt Reactors Efficient Nuclear Fuel Utilization without Plutonium Separation and further extends the ORNL work reported in The Development Status of Molten Salt Breeder Reactors from August 1972. (It appears that August is the month of important reports by ORNL). This later behemoth 434 page report is the mother lode of information for all work done at ONRL regarding Molten Salt Fission Energy Technology powered by Thorium. Anyone looking at investing into this technology must make it a priority read – all of the work has been done before. The report can be found further below in this post.

    This most recent report on this technology has been produced by the authors, Dr. Richard L. Reed, Dr. Louise G. Evans and Donald N. Kovacic, B.Sc. All are senior scientists involved with Molten Salt Technology at ORNL.

    Before we discuss the report, first we’ll discuss why it’s important to define new terminology for nuclear energy sector.

    For generations massive amounts of negative press and target funding has branded the word nuclear as simply bad. And let’s face it. Nuclear Physics is complicated, and so conversations get complicated pretty quickly too. Let’s just look at the elements we can play with.

    Periodic Table

    Out of 118 elements in the Periodic Table, 80 are stable having 339 isotopes, leaving 38 elements – those heavier than lead – as unstable. These 38 elements have over 3,000 possible isotope existent states. Hence thousands of unstable isotopes, lead to 10’s of thousands of combinations of decay, neutron absorption, and possible fission events, from neutrons both fast – high energy particles, and thermal – low energy particles, and then hundreds of other non responsive isotopes of non responsive elements that exhibit different behaviours over time and distance. For example water is better for absorbing fast neutrons and lead is better for thermal neutrons. Boron-10 absorbs neutrons, whilst boron-11 does not. Neutrons bounce off, are reflected by graphite, beryllium, steel, tungsten carbide, and gold (There are more too). OK, so the picture is clear – fission energy gets complicated very quickly.

    DOE Explains…Isotopes

    Shielding Neutrons with Different Materials

    Remember too, that this all started in a race to build nuclear weapons – not to make energy. Weapons should all be dismantled and destroyed. USA and UK should follow in the footsteps of South Africa who dismantled their last bomb in 1989. Today the USA and UK combined have enough firepower to destroy humanity entirely 150 times over. We are thankful that Molten Salt technology was pursued with such vigor precisely because it cannot make weapons. It only makes energy.

    The Thorium fuel cycle is “intrinsically proliferation-resistant”

    The International Atomic Energy Agency, 2005

    Thorium fuel cycle — Potential benefits and challenges IAEA, May 2005


    Hans Blix, former head of IAEA explaining why Thorium, and Molten Salt Fission Energy Technology doesn’t even need to be addressed by the IAEA.

    Former head of IAEA, Hans Blix, discussing why Thorium is superior

    Why South Africa Dismantled Its Nuclear Weapons

    by Evelyn Andrespok, March 2010
    South African Nuclear Bomb Casings
    Bomb Delivery – English Electric Canberra South African Air Force in Angola

    We are also thankful that nuclear weapons are now illegal (why did THAT take so long?)

    Treaty on the Prohibition of Nuclear Weapons


    So back to the nomenclature.

    We call it Fission, not nuclear.

    We call them Machines, not reactors. (By the way, there’s no reactions going on, and indeed in the core region fuel is “burned” according to the physics text books. In Fission, atoms are split, so “splitter” is the correct term!)

    We say Molten Salt Fission Energy TechnologyMSFT. Not anything else. Calling it LFTR ties the technology to a specific fluid-fuel type. Even the company FLIBE are considering changing the Beryllium metal to Sodium metal (the BE means Beryllium in their company’s name).

    And Fission – Nuclear Energy – is effectively Carbon Free. Even Bill Gates knows this.

    Bill Gates getting into Molten Salt

    Bill Gates going Nuclear

    The latest ORNL report is excellent at defining the challenges already identified 50 years ago. The net result is that ORNL have made recommendations to modify the Flibe design thus eliminating any chance of weapons production from Molten Salt Fission Energy Technology powered by Thorium.

    Some of these recommendations are:

    • Use multiple, smaller decay vessels for salt distribution for emergency shutdown events.
    • Install stringent material monitoring systems with tamper evident features for fuel processing.
    • Use batch fuel processing and not continuous for better inventory controls.
    • Recombine fuel elements to increase gamma activity of the fuel processing cycle.
    • Allow U232 production to increase hence increasing the self protection mechanism.
    • Eliminate the decay fluorinator entirely by allowing protactinium to decay in the fuel salt.
    • Remove physical access to the UF6 stream by have vessels immediately adjacent to each other.

    These, and other recommendations, effectively define Molten Salt Fission Technology powered by Thorium as proliferation proof.

    You can see the full report here:



    The latest ORNL report must be read in conjunction with a 1978 report, also by ORNL staff – and also released in the month of August – where proliferation concerns of the earlier designs where addressed. In that report the authors J. R. Engel, W. R. Grimes, W. A. Rhoades and J. F. Dearing allowed the build up of U232 to create self protection whilst still maintaining machine performance – “denatured”, as they called it.

    Here is that report, Technical Memorandum TM 6413, from August 1978:

    ORNL TM 6413 August 1978 Molten-Salt Reactors for Efficient Nuclear Fuel Utilization Without Plutonium Separation


    Here’s one of the authors of that report – John Richard “Dick” Engel – shortly before his passing in 2017.

    Dick Engel & Syd Ball – ORNL Molten Salt Reactor Engineer Interview shot for THORIUM REMIX

    The following documents should also be read together with ORNL report 2022/2394 to ensure full understanding:

    ORNL TM 3708 1964 Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964

    This report summarized the work leading up to the Molten Salt Reactor Experiment, that ran from 1965 to 1969 – the “most boring experiment ever. It did everything we expected it to do.”, said by Dr. Sydney Ball.

    The Molten-Salt Reactor Experiment

    ORNL TM 4658 1972 Chemical Aspects of MSRE Operations

    This report debunks corrosion myths surrounding Molten Salt Technology.

    ORNL TM 4812 August 1972 Development Status of Molten-Salt Breeder Reactors

    This is the report that ended in the program being shut down. The USD 1 billion funding request was too obvious to ignore and many people realised what impact this would have on existing business interests in energy.

    Why MSRS Abandoned ORNL Weinberg’s Firing by Bruce Hoglund

    A concise summary of the facts behind the closure of the Molten Salt Program at Oak Ridge.

    Here is the 2015 assessment report referenced in ORNL report 2022/2394.

    Electric Power Research Institute – Program on Technology Innovation: Technology Assessment of a Molten Salt Reactor Design – The Liquid Fluoride Thorium Reactor (LFTR)

    Electric Power Research Institute Report Abstract

    EPRI collaborated with Southern Company on an independent technology assessment of an innovative molten salt reactor (MSR) design—the liquid-fluoride thorium reactor (LFTR)—as a potentially transformational technology for meeting future energy needs in the face of uncertain market, policy, and regulatory constraints. The LFTR is a liquid-fueled, graphite-moderated thermal spectrum breeder reactor optimized for operation on a Th-233U fuel cycle. The LFTR design considered in this work draws heavily from the 1960s-era Molten Salt Reactor Experiment and subsequent design work on a similar two-fluid molten salt breeder reactor design. Enhanced safety characteristics, increased natural resource utilization, and high operating temperatures, among other features, offer utilities and other potential owners/operators access to new products, markets, applications, and modes of operation. The LFTR represents a dramatic departure from today’s dominant and proven commercial light water reactor technology. Accordingly, the innovative and commercially unproven nature of MSRs, as with many other advanced reactor concepts, presents significant challenges and risks in terms of financing, licensing, construction, operation, and maintenance.

    This technology assessment comprises three principal activities based on adaptation of standardized methods and guidelines: 1) rendering of preliminary LFTR design information into a standardized system design description format; 2) performance of a preliminary process hazards analysis; and 3) determination of technology readiness levels for key systems and components. The results of the assessment provide value for a number of stakeholders. For utility or other technology customers, the study presents structured information on the LFTR design status that can directly inform a broader technology feasibility assessment in terms of safety and technology maturity. For the developer, the assessment can focus and drive further design development and documentation and establish a baseline for the technological maturity of key MSR systems and components. For EPRI, the study offers an opportunity to exercise and further develop advanced nuclear technology assessment tools and expertise through application to a specific reactor design.

    The early design stage of the LFTR concept indicates the need for significant investment in further development and demonstration of novel systems and components. The application of technology assessment tools early in reactor system design can provide real value and facilitate advancement by identifying important knowledge and design performance gaps at a stage when changes can be incorporated with the least impact to cost, schedule, and licensing.


    Thorium Reactor Graphic by PopSci

    Finally, a reminder. Why all the fuss about Thorium Molten Salt anyway? What did those giants of nuclear energy see starting way back in 1947 that we don’t see today? It’s because of this chart by ANSTO of Australia. It’s a little known – public – secret, that Australia, part of the Generation IV Forum, but ironically staunchly anti nuclear, is also one of the strongest countries in technology development for Molten Salt Fission Energy powered by Thorium.

    ANSTO Energy Density
    ANSTO Energy Density (LWR = Solid Fission; MSR = Molten Salt Fission)

    We hoped you enjoyed this article, produced free for all advocates and students of Molten Salt Fission Energy powered by Thorium. If you like this work and want to see more, please support this work by going to our contributions page, where you can then find our Patreon account.


    Links and References

    1. https://www.ornl.gov/
    2. https://en.wikipedia.org/wiki/UT%E2%80%93Battelle
    3. https://flibe-energy.com/
    4. https://www.worldatlas.com/articles/how-many-elements-are-there.html
    5. https://en.wikipedia.org/wiki/Isotope
    6. https://www.osti.gov/biblio/5289038-molten-salt-reactors-efficient-nuclear-fuel-utilization-without-plutonium-separation
    7. https://www.osti.gov/biblio/5688579-molten-salt-reactors-efficient-nuclear-fuel-utilization-without-plutonium-separation
    8. https://digital.library.unt.edu/ark:/67531/metadc1033578/
    9. https://www.osti.gov/biblio/4099994-status-us-program-development-molten-salt-breeder-reactor
    10. https://www.linkedin.com/in/richard-reed-98769430/
    11. https://www.linkedin.com/in/louisegevans/
    12. https://www.linkedin.com/in/donald-kovacic-7b468a6/
    13. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/neutron/shielding-neutron-radiation/
    14. https://www.worldatlas.com/articles/how-many-elements-are-there.html
    15. https://en.wikipedia.org/wiki/Treaty_on_the_Prohibition_of_Nuclear_Weapons
    16. https://en.wikipedia.org/wiki/South_Africa_and_weapons_of_mass_destruction
    17. https://wp.towson.edu/iajournal/articles/2010-2019/fall-2010-issue/why-south-africa-dismantled-its-nuclear-weapons/
    18. https://www-pub.iaea.org/mtcd/publications/pdf/te_1450_web.pdf
    19. https://splash247.com/bill-gates-joins-nuclear-powered-shipping-push/
    20. https://www.epri.com/
    21. https://www.southerncompany.com/
    22. https://www.epri.com/research/products/000000003002005460
    23. https://newenergyandfuel.com/http:/newenergyandfuel/com/2011/11/04/thorium-fueled-nuclear-plant-to-be-built/
    24. https://www.youtube.com/watch?v=tyDbq5HRs0o
    25. https://www.legacy.com/us/obituaries/knoxnews/name/john-engel-obituary?id=16904544
    26. https://www.youtube.com/watch?v=_yO0Qk-_Gms
    27. https://www.linkedin.com/in/bruce-hoglund-52194814/
    28. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
    29. https://www.popsci.com/technology/article/2010-08/thorium-reactors-could-wean-world-oil-just-five-years/
    30. https://www.gen-4.org/

    #FissionEnergy #NuclearEnergy #TheThoriumNetwork #Fission4All #RadiationIsGood4U #GotThorium #ORNL #OakRidge #MSRE #MoltenSaltFissionEnergy #Thorium

  • A Crib Sheet for Journalists and Students of Thorium

    Are you a journalist – or a student – looking for the inside on Liquid Fission Thorium? Unlimited energy. Secure. Reliable. Well this page is for you.

    We’ve been asked many times for a summary of resources or key people to speak with.

    Are we biased? Of course we are. Read on and you’ll know why. You’ll probably want to Join Us too.


    A Future Powered by Thorium is our objective. We are leveraging the billions of USD in today’s value and millions of hours invested over 50 years ago in a technology that is demonstrably superior to anything else we have today.

    Here’s a summary of that work from Oak Ridge National Laboratories:

    The Molten-Salt Reactor Experiment from 1969

    We have this YouTube and other useful 3rd party links on our website here:

    The Thorium Knowledge Base

    See this chart of energy density from an Australian government website. Everything else pales into insignificance when compared to Liquid Fission Machines (also called MSR Molten Salt Reactors).

    ANSTO Energy Density Bar Chart
    ANSTO Energy Density Bar Chart

    Here’s a recent article from Germany we translated into Japanese. It contains a lot of information on China’s progress also. China is replicating the 1960’s USA program, publicly announcing in 2011 investing USD 3,3 billion and 700 engineers for the work. This is not about reinventing the wheel, it’s just remembering what we’ve done before. Remember also China and Australia worked together to create a replacement for the super alloy metal “Hastelloy”. This super metal was created in the 1950’s in the USA for their advanced nuclear programs and is only made today by two companies in the world – one in the USA and Mitsubishi. Now China has an alternative.

    The article also includes information on Japan’s liquid fission project –  FUJI.

    Here’s a list of must-do-interviews for background on Liquid Fission Thorium Energy or subjects related, such as radiation safety, the effects of Chernobyl and Linear No Threshold theory.

    Professor Geraldine Thomas
    Director of the Chernobyl Tissue Bank, the world’s preeminent knowledge base for all things related to the real effects of that industrial accident. Prof. Thomas is became staunchly pro-nuclear due to her directorship. George Monbiot – a former Greenpeace anti-nuc activist, and now no longer in Greenpeace and strongly pro nuclear – after an interview he also had with Prof Thomas he had as a writer for the UK’s Guardian. 

    George Monbiot on Wikipedia

    Geraldine Thomas on Wikipedia

    Chernobyl Tissue Bank

    Geraldine Thomas

    Mr. Daniel Roderick
    Former President and CEO of Westinghouse and then Toshiba Energy Systems. Danny steered the sale of  Westinghouse for Toshiba, securing a positive, multi billion USD outcome for Japan. Danny was also the leader of negotiations to secure USD 50 billion in funding for a new nuclear build in Türkiye (derailed by the 2016 attempted coup in Türkiye). Mitsubishi subsequently submitted (and withdrew)  a nuclear build in Sinop, Northern Türkiye. Rosatom (Russia) is now building a nuclear power station in Akkuyu, southern Türkiye.

    Daniel Roderick

    Dr. Adi Paterson
    Dr. Paterson is the former head of ANSTO and an advocate of Liquid Fission Thorium Energy Technology. During his 9 year tenure at ANSTO, Dr. Paterson steered Australia to membership of the Generation IV forum, kind of the United Nationals for advanced fission designs. This is no mean feat given Australia’s lack of much to do with nuclear energy. 

    Generation IV Forum

    Adi Paterson

    Dr. Resat Uzman
    Director of nuclear energy systems at Figes AS, of Türkiye. Dr. Uzman has more than 40 years experience in all things nuclear, Türkiye and rare earths – the materials where Thorium is often found bound with.

    Nukleer Enerji Seminer 3 Dr. Resat Uzmen
    Dr. Resat Uzmen

    Professor Berrin Erbay
    Senior lecturer and former dean of mechanical engineering at Osmangazi University, Türkiye Prof. Erbay has been liaising with the professors in Japan for several decades. You can see one of her presentations on the status of Liquid Fission Technology in Japan here on Youtube: 

    Berrin Erbay
    4. Nesil Nükleer Reaktör Teknolojileri Toplantısı

    Mr. Phumzile Tshelane
    Mr. Tshelane is a former CEO of NECSA South Africa, now holds various directorships across a wide range of industrial sectors. His position as head of a state owned nuclear technology development company gives him a particular view point on commercialisation of nuclear energy technologies.

    Mr. Phumzile Tshelane
    S3E6 Africa4Nuclear: The Story of Thorium

    Ms. Rana Önem
    Former president of the Thorium Student Guild. You should hear from someone discovered the benefits of Liquid Fission Thorium when studying their nuclear engineering degree. You can see Rana interviewing Dr. Uzman here. Follow the links at the end of the article to see her role as president of the Guild: 

    President – Ms. Rana Önem, Eng
    Fmr. President – Ms. Rana Önem, Eng

    An important subject to cover is linear no threshold theory – a fraudulent model of radiation management that, unfortunately, has spawned an industry of radiation protection and radiation safety keen on maintaining its own survival. This results in massive, unnecessary overspending on nuclear builds. Professor Edward Calabrese is a leading expert on this subject and you can watch a series of interviews with Ed here: 

    The History of the Linear No-Threshold (LNT) Model Episode Guide

    Together with Professor Jerry Cuttler, Ed presents clearly, laying out how LNT has demonstrably been proven false. (And consequently those that died at Fukushima died unnecessarily, as a direct result of inappropriately applying that theory).

    What would become of nuclear risk if governments changed their regulations to recognize the evidence of radiation’s beneficial health effects for exposures that are below the thresholds for detrimental effects?

    Here’s the background on the Türkiye Japan University (TJU). Our founder, Jeremiah Josey, met with the Japanese Ambassador to Türkiye in 2021 and confirmed Japanese support for technology development of Liquid Fission is easier should such work be included in the curriculum of the TJU. Early planning stages of the TJU can be seen here below. The vice president of TJU is a senior professor at the Tokyo University responsible for nuclear engineering.

    The “only” obstacle to adoption of Liquid Fission Thorium is the incumbent energy industries. It’s a significant obstacle, and it would be naive to think otherwise. Operating much like the tobacco industry has done in the past, lobbyists and funding at all levels occurs to stymie any potential competitors.

    It is predicted that the 7 Trillion USD per year fossil fuel energy market would shrink to a few hundred billion USD per year with a society powered by Liquid Fission Thorium. This is an obvious disincentive for incumbents to do anything but to obfuscate and delay. For the true scale of these numbers, that means that a world powered by Liquid Fission Thorium energy would require only one ship like the one below to carry ALL WORLD’s Energy for ONE year.

    100,00 DWT Bulk Carrier Cape Ace

    You can see that obfuscation at work here with both Wired and the Bulletin in 2019 on USA presidential candidate Andrew Yang:

    Fact-check: Five claims about thorium made by Andrew Yang – Bulletin


    Andrew Yang Wants a Thorium Reactor by 2027. Good Luck, Buddy – Wired

    The half truths and lies are difficult, if not impossible, for the layperson to identify. We contacted one of Andrew’s advisory team members and confirmed Andrew supports Liquid Fission Thorium, and was committing several billion USD to have USA’s energy footprint 100% on the technology by 2030. Technically very doable. Politically, not.

    It is important to recognise the ecological and economic footprint of energy from Thorium (a substance as common as lead) as being much smaller than even uranium. In the article link above (the Japanese translation one) there are three slides that demonstrate the significant benefits Thorium has over uranium.  These slides are repeated below.

    Thorium and Uranium Compared Slide 1 of 3
    Thorium and Uranium Compared Slide 1 of 3
    Thorium and Uranium Compared Slide 2 of 3
    Thorium and Uranium Compared Slide 2 of 3
    Thorium and Uranium Compared Slide 3 of 3
    Thorium and Uranium Compared Slide 3 of 3

    The IAEA report TE1450 from 2005 is an excellent read. It says Thorium is not an issue and is a good prospect for energy – back in 2005. Once the physics is proven it doesn’t need to be “upgraded” every 6 months like an iPhone.

    And yes, Thorium doesn’t explode. “Walk away safe” is a suitable term for Liquid Fission Technology.

    Here’s the former head of IAEA, Hans Blix, stating that “Thorium shouldn’t be treated like uranium”. 

    Thorium Nuclear Power and non Proliferation Hans Blix IAEA ThEC13

    See more Hans Blix on Liquid Fission Thorium Energy

    Attached below is a brief summary of “Why Thorium didn’t take off” by Bruce Hoglund, 5 November 2010. It’s an excellent starting point for data gathering and research – and not “Wikipedia”. Wikipedia was used as partial evidence why the United Kingdom should’t use Thorium for energy. Some 10 years ago in a UK government 1.5m GBP funded “study”, rubbished Thorium and directly contradicted the advice of the IAEA’s TE 1450 report.


    The information here is but the tip of the iceberg, however it gives an excellent starting point. There are of course, many, many others who can contribute considerably for a balanced and objective article or articles on Thorium for our energy future. And with today’s communications technology, such conversations are only but a few key strokes away.

    Burning stuff is old tech. Star Trek technology is where we have to be now. Fission does that, especially Liquid Fission Thorium Energy Technology.

    Uncle Martin would be proud. Nanu, nanu!


    Post created following a 2 hour interview between Associated Press representative for Japan, Ms. Yuri Kageyama and founder of The Thorium Network, Jeremiah Josey


    1. https://thethorium.network/join-us/
    2. https://www.youtube.com/watch?v=tyDbq5HRs0o
    3. https://thethorium.network/about-thorium/thorium-knowledge-base/
    4. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
    5. https://thethorium.network/%e3%83%91%e3%83%bc%e3%83%95%e3%82%a7%e3%82%af%e3%83%88%e3%83%86%e3%82%af%e3%83%8e%e3%83%ad%e3%82%b8%e3%83%bc-%e3%83%90%e3%82%a4%e3%83%aa%e3%83%b3%e3%82%ac%e3%83%ab%e8%a8%98%e4%ba%8b-%e6%97%a5%e6%9c%ac/
    6. https://en.wikipedia.org/wiki/Geraldine_Thomas
    7. https://en.wikipedia.org/wiki/George_Monbiot
    8. https://www.chernobyltissuebank.com/contact-us
    9. https://www.linkedin.com/in/danielroderick/
    10. https://www.linkedin.com/in/adi-paterson/
    11. https://www.gen-4.org/
    12. https://figes.com.tr/en/home
    13. https://www.linkedin.com/in/resat-uzmen-051a824/
    14. https://thethoriumnetwork.com/2022/05/17/interview-3-dr-resat-uzmen-nuclear-technology-director-of-figes-part-of-the-thorium-student-guild-interview-series-leading-to-nuclear/
    15. https://www.youtube.com/watch?v=NEDK_MAWQD0
    16. https://www.linkedin.com/in/l-berrin-erbay-61b04745/
    17. https://www.linkedin.com/in/phumzile-tshelane-3014945a/
    18. https://www.necsa.co.za/
    19. https://www.youtube.com/watch?v=6MsgDx8K-t4
    20. https://www.linkedin.com/in/rana-%C3%B6nem-57a14718b/
    21. https://thethoriumnetwork.com/join-us/student-guild/
    22. https://www.linkedin.com/in/ed-calabrese-697a1119/
    23. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
    24. https://hps.org/hpspublications/historylnt/episodeguide.html
    25. https://www.linkedin.com/in/jerry-cuttler-26106763/
    26. https://www.linkedin.com/posts/jerry-cuttler-26106763_what-would-become-of-nuclear-risk-if-governments-activity-6870517584475824128-qr3W
    27. https://www.youtube.com/watch?v=eJSeQIW-X44
    28. https://thebulletin.org/2019/12/fact-check-five-claims-about-thorium-made-by-andrew-yang/
    29. https://www.wired.com/story/andrew-yang-wants-a-thorium-reactor-by-2027-good-luck-buddy/
    30. https://www.youtube.com/watch?v=F4m10Y0rWBY
    31. https://www.youtube.com/results?search_query=hans+blix+thorium
    32. https://www.linkedin.com/in/bruce-hoglund-52194814/

    #Journalist #CribSheet #Thorium #Interviews #MoltenSaltFissionEnergy #Rosatom #Japan #Turkey #China #LNT #LiquidFission

  • Episode 21 – Proliferation? Not on Our Watch – Unintended Consequences – Chapter 8 Part 5

    Taking the Easiest Course of Action

    It would be very difficult to make a weapon from LFTR fuels because the gamma rays emitted by the U-232 in the fuel would harm technicians and damage the bomb’s electronics.

    Uranium could be stolen during enriching, production of pellets, delivery to the reactor, and for long-term storage, but LFTRs only use external uranium to start the reaction, after which time uranium is produced within the reactor from thorium.

    The Most Radioactive Places on Earth

    The United Kingdom tried unsuccessfully over a period of 10 years, from the 1950’s to the 1960’s, to produce a weapon from Thorium. They gave up and switched to the uranium path. Still today, 1.5 tonnes of Thorium remain stored from that program. This is enough to power the entire UK for 10 years – Carbon Free.

    The USA fired one Thorium driven test in 1955 (MET/Operation Teapot), but the results so poor and complications so high they did no further.

    A 1 GW LWR [Light Water Reactor] requires about 1.2 tons of uranium per year, but a 1 GW LFTR only needs a one-time “kick-start” of 500 pounds [225 kg] of U-235 plus 1 ton of Thorium per year during its 60 year lifespan.

    The half-life of Thorium 232 is 14 billion years, so it is not hazardous due to its extremely slow decay.

    The primary physical advantage of Thorium fuel is that it uniquely makes possible a breeder reactor that runs with slow neutrons, otherwise known as a thermal breeder reactor. These reactors are often considered simpler than the more traditional fast-neutron breeders.

    IAEA 2005

    [When Thorium 232 takes up a neutron, the subsequent decay takes two paths: mostly U233 and some U232. The U233 provides most of the useful energy production by Fission. U232 provides protection against proliferation as several decay daughters are high energy gamma emitters – meaning they burn out silicon chips. For example the gamma spike coming from Thallium 208 is 2.6 MeV. ]

    [Shielding using advanced materials and methods, such as distance (air), lead, and water can reduce radiation energy to levels where dosages are at recommended levels around 10 microSiverts per hour or 100 milliSiverts per year.

    Note that there have been many examples of doses much higher than this causing no concern, such as 350 microSiverts per hour received by Albert Stevens for over 20 years.

    Radiation shielding is a mass of absorbing material placed between yourself and the source of radiation in order to reduce the radiation to a level that is safer for humans.

    This is measured by using a concept called the halving thickness – the thickness of a material required to halve the energy of the radiation passing through it.

    Remember also, that Radiation decreases with distance in accordance with the inverse square law.]

    Radiation Halving Thickness Chart

    Material100 keV200 keV500 keV
    Air3555 cm4359 cm6189 cm
    Water4.15 cm5.1 cm7.15 cm
    Carbon2.07 cm2.53 cm3.54 cm
    Aluminium1.59 cm2.14 cm3.05 cm
    Iron0.26 cm0.64 cm1.06 cm
    Copper0.18 cm0.53 cm0.95 cm
    Lead0.012 cm0.068 cm0.42 cm
    Radiation Halving Thickness Chart

    Quotes by Albert Einstein

    “I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.”

    “Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger,” 

    “I made one great mistake in my life-when I signed the letter to President Roosevelt recommending that atom bombs be made but there was some justification-the danger that the Germans would make them.”

    “The release of atomic power has changed everything except our way of thinking … the solution to this problem lies in the heart of mankind. If only I had known, I should have become a watchmaker.” – Albert said this in 1945, after the US bombed Japan with nuclear weapons and killed over 200,000 innocent civilians. Approximately 50,000 of them where children, 100,000 where women, and the balance the elderly. There were minor military casualties.

    “Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius — and a lot of courage — to move in the opposite direction.”

    “Peace cannot be kept by force. It can only be achieved by understanding.”

    “Two things are infinite: the universe and human stupidity; and I’m not sure about the universe.”

    “He who joyfully marches to music rank and file, has already earned my contempt. He has been given a large brain by mistake, since for him the spinal cord would surely suffice. This disgrace to civilisation should be done away with at once. Heroism at command, how violently I hate all this, how despicable and ignoble war is; I would rather be torn to shreds than be a part of so base an action. It is my conviction that killing under the cloak of war is nothing but an act of murder.”

    Albert Einstein, the Grandfather of Fission Energy

    Energy production is the only viable way away from militarisation of Fission Energy. In the same way fire is harnessed in a fireplace to warm our homes or make our steels, Invisible Fire, Fission Energy, Energy from the Atom, does the same.

    We are blessed by people like Alvin Weinberg who dedicated their lives to the cause after witnessing how their scientific endeavours were employed with such militaristic zeal for death and destruction.

    Dr. Alvin Weinberg
    Dr. Alvin Weinberg b. April 20, 1915, Chicago, Illinois d. October 18, 2006, Oak Ridge, Tennessee

    “Weinberg realised that you could use Thorium in an entirely new kind of reactor, one that would have zero risk of meltdown. … his team built a working reactor … and he spent the rest of his 18-year tenure trying to make Thorium the heart of the nation’s atomic power effort. He failed. Uranium reactors had already been established, and Hyman Rickover, defacto head of the US nuclear program, wanted the plutonium from uranium-powered nuclear plants to make bombs. Increasingly shunted aside, Weinberg was finally forced out in 1973.”

    Richard Martin, 2009, Wired Magazine

    Russia Investigates Thorium for Power Generation


    Coming up next week, Episode 22 – The Pros of LFTRs. Why are they So Cool?


    Links and References

    1. Next Episode – Episode 22 – The Pros of LFTRs. Why are they So Cool?
    2. Previous Episode – Episode 20 – Got a LFTR? What’s Under the Hood
    3. Launching the Unintended Consequences Series
    4. Dr. George Erickson on LinkedIn
    5. Dr. George Erickson’s Website, Tundracub.com
    6. The full pdf version of Unintended Consequences
    7. https://en.wikipedia.org/wiki/Thorium_fuel_cycle#Uranium-232_contamination
    8. https://en.wikipedia.org/wiki/Albert_Stevens
    9. https://www.youtube.com/watch?v=TRL7o2kPqw0
    10. https://modernsurvivalblog.com/nuclear/nuclear-radiation-shielding-protection/
    11. https://en.wikipedia.org/wiki/Radioactive_contamination
    12. https://en.wikipedia.org/wiki/Gamma_ray
    13. https://www.nuclear-power.com/nuclear-engineering/materials-nuclear-engineering/properties-of-water/water-as-gamma-radiation-shielding/
    14. https://www.flickr.com/photos/mitopencourseware/3776104498/in/photostream/
    15. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/radiation/shielding-of-ionizing-radiation/shielding-gamma-radiation/
    16. https://en.wikipedia.org/wiki/Uranium-232
    17. https://patreon.com/posts/39262802
    18. https://en.wikipedia.org/wiki/Albert_Einstein
    19. https://www.vintag.es/2016/04/amazing-black-and-white-photographs.html
    20. https://inktank.fi/five-fascinating-facts-you-didnt-know-about-albert-einstein/
    21. https://www.history.com/news/9-things-you-may-not-know-about-albert-einstein
    22. https://www.neimagazine.com/news/newsrussia-investigates-thorium-4986083/

    #UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

  • 「パーフェクトテクノロジー」-バイリンガル記事-日本語/英語 – “The Perfect Technology” – a Bilingual Article – Japanese & English

    この記事は、2022年3月14日にプロイセンの一般新聞Preußische Allgemeine Zeitungによって公開されました。著作権表示:教育目的でフェアユースを適用する。 / This article published 14 March 2022 by Preußische Allgemeine Zeitung, the Prussian General Newspaper. Copyright notice: applying fair use for educational purposes.

    トリウムベースの溶融塩原子炉・液体燃料No.1 の責任:上海応用物理学研究所

    Responsible for the Thorium-based Molten Salt Reactor-Liquid Fuel No. 1: The Shanghai Institute of Applied Physics

    中国の溶融塩ループ実験 / China’s molten salt loop experiment

    トリウム溶融塩原子炉

    核燃料が溶融塩の形である原子炉は、多くの恩恵をもたらします。近い将来、中国で試験施設が稼働する予定です。

    THORIUM MOLTEN SALT REACTORS Nuclear reactors in which the nuclear fuel is in the form of molten salt offer a wealth of advantages. A test plant will go into operation in China in the near future.

    「パーフェクトテクノロジー」

    原料は安価で世界中で入手可能であり、冷却水さえも必要ではなく、廃棄物は少なくなり、従来の核廃棄物よりもはるかに速く崩壊する

    “Perfect technology”

    The raw material is cheap and available worldwide, not even cooling water is needed and the waste is less and decays much faster than conventional nuclear waste: Thorium technology stands for a new quality of the use of nuclear energy

    Wolfgang Kaufmann 23.01.2022

    中国中部甘粛省の武威近くにある紅沙港工業団地では、パイロットプラントが間もなく稼働し、中国だけでなく世界中のエネルギー生産に革命を起こす可能性があります。 化石燃料の使用による二酸化炭素の排出、風力タービンの景観の劣化、環境に有害な生産による電池の大量使用、風や曇りのない天候での停電、リスクはありません。原子炉の事故による放射能の増加は、革新的なトリウムベースの溶融塩原子炉によって約束されています。 上海応用物理研究所のトリウムベースの溶融塩原子炉No.1(TMSR-LF1)は、原子力エネルギーの使用における新しい品質を表しており、それに「グリーンコート」を与えることになっています。

    In the Hongshagang Industrial Park near Wuwei in the central Chinese province of Gansu, a pilot plant will go into operation in the near future, which has the potential to revolutionize energy production not only in the Middle Kingdom, but throughout the world. No more carbon dioxide emissions as a result of the use of fossil fuels, no more landscape degradation by wind turbines, no mass use of batteries from environmentally harmful production, no power outages in calm winds and clouds, but also no radiation risk due to reactor accidents, all this promises the innovative Thorium-based Molten Salt Reactor-Liquid Fuel No. 1 (TMSR-LF1) of the Shanghai Institute of Applied Physics, which advocates a new quality of use of the Nuclear energy is in place and this should give it a kind of “green coat of paint”.

    溶融塩核分裂エネルギー回路図 / Molten Salt Fission Energy Schematic
    Yoichiro Shimazu – FUJI Molten Salt Reactor [MSR] Passive Heat Removal System @ ThEC12

    TMSR-LF1トリウム液体塩原子炉の機能は比較的簡単です。 弱放射性元素のトリウムは液体の塩に溶解し、中性子を照射します。 これにより、核分裂時に大量の熱を放出する同位体ウラン233が生成されます。 したがって、原子炉は独自の燃料を生成します。最終的に、このプロセスは、従来の原子炉の運転よりもはるかに安全であり(以下を参照)、他にも多くの利点があります。

    The operation of the Thorium Molten Salt reactor TMSR-LF1 is relatively simple. The weakly radioactive element Thorium is dissolved in molten salt and bombarded with neutrons. This produces the isotope uranium 233, the fission of which releases large amounts of heat. So the reactor produces its own fuel. This process ultimately brings much more safety than the operation of classic nuclear reactors (see below) and also a variety of other advantages.

    6つの恩恵

    Six Benefits

    まず、必要なトリウム232はごく少量です。 イタリアのノーベル物理学賞を受賞したカルロ・ルビアが計算したところ、1トンのトリウムのエネルギー含有量は200トンのウラン金属または2800万トンの石炭のエネルギー含有量に相当するためです。

    First, only extremely small amounts of Thorium 232 are needed. The energy content of one ton of Thorium corresponds to that of 200 tons of uranium metal or 28 million tons of coal, as the Italian Nobel Laureate in Physics Carlo Rubbia calculated.

    第二に、世界中に主要なトリウム鉱床があります。 原則として、この元素は鉛と同様の頻度で岩石地殻に発生し、希土類の採掘における廃棄物としても発生します。 それが高価ではない理由です。 一方で、最近、従来の原子力発電所の数が再び大幅に増加しているため、ウランの不足や価格の高騰が見込まれます。

    Secondly, there are larger Thorium deposits all over the world. In principle, the element occurs in the rock crust as often as lead and is also produced as a waste product in the extraction of rare earths. That’s why it’s not expensive. On the other hand, there is a risk of shortages and price explosions for uranium in the future, because the number of conventional nuclear power plants has recently increased significantly again.

    第三に、トリウム溶融塩反応器は、例えば砂漠地域を含む事実上どこにでも建設することができる。冷却水を必要としないからです。

    Thirdly, a Thorium Molten Salt reactor can be built virtually anywhere, including desert regions, for example. Because it does not require any cooling water.

    第四に、そのオペレーション(原典はドイツ語であるので、この場合ビトリーブとなりうるか)はまた、大幅に少ない放射性廃棄物を生成します。また、TMSR-LF1からの核廃棄物の99%以上は、遅くとも300年後には無害な同位体に崩壊したと言われています。さらに、より高度な溶融塩反応器で後でより長い放射材料の少量の残留量を処理し、したがって完全に中和することができる。比較すると、ウランを動力源とする従来の原子炉は、使用される核燃料のほんの一部しか使用されていないにもかかわらず、数千年の半減期を持つ長寿命の放射性核分裂生成物を生成します。

    Fourthly, its operation also generates significantly less radioactive waste. In addition, more than 99 percent of the nuclear waste from the TMSR-LF1 is said to have decayed into harmless isotopes after 300 years at the latest. Furthermore, it is possible to process the small residual amounts of longer radiating material later in more advanced molten salt reactors and thus completely neutralise. By way of comparison, conventional nuclear reactors powered by uranium produce long-lived radioactive fission products with half-lives of many thousands of years, even though only a small fraction of the nuclear fuel used is used.

    第五に、トリウム溶融塩炉の建設と運転のコストは、通常使用される軽水炉のコストよりも低い。これは主に、システムの動作圧力が低いため、多くの安全上の注意が不要であること、および燃料棒を調達する必要がないという事実によるものです。

    Fifthly, the costs for the construction and operation of Thorium Molten Salt reactors are lower than those of the light-water reactors that are usually used. This is mainly due to the low operating pressure of the systems, which makes numerous safety precautions superfluous, as well as the fact that no fuel rods have to be procured.

    第六に、TMSR-LF1のような原子炉は、ウラン233がインキュベートされるだけでなく、核医学などで必要とされる他の多くの放射性核分裂生成物も生成されるため、非常に経済的に運転することができます。そして、放射性核種のいくつかは、ルビジウム、ジルコニウム、モリブデン、ルテニウム、パラジウム、ネオジム、サマリウムなどの非常に求められている元素にさえ変わります。同様に、希ガスキセノンが放出され、とりわけ絶縁媒体として、またレーザーおよび航空宇宙技術において使用される。

    Sixthly, reactors such as the TMSR-LF1 can also be operated extremely economically because not only uranium 233 is incubated in them, but also many other radioactive fission products are produced, which are required, for example, in nuclear medicine. And some of the radionuclides even turn into highly sought-after elements such as rubidium, zirconium, molybdenum, ruthenium, palladium, neodymium and samarium. Likewise, the noble gas xenon is released, which is used, among other things, as an insulation medium as well as in laser and aerospace technology.

    戦争は万物の父

    War is the father of all things

    TMSR-LF1の基礎となる技術は、中国ではなく米国で発明されました。早くも1954年には、空軍は長距離爆撃機に動力を供給するために小型の溶融塩原子炉を実験しました。しかし、このプロジェクトは、米国が大陸間弾道ミサイルを保有していたときに急速に終了しました。同様に、1970年代初頭、ユーリッヒ原子力研究施設の西ドイツの科学者は、溶融塩炉に関するいくつかの研究を発表しましたが、当時の原子炉開発責任者ルドルフ・シュルテンの消極的な態度のために最終的に注目されませんでした。

    The technology underlying the TMSR-LF1 was not invented in China, but in the USA. As early as 1954, the Air Force experimented with a small molten salt reactor to power long-range bombers. However, the project came to a rapid end when the United States had intercontinental ballistic missiles. Likewise, at the beginning of the 1970s, West German scientists from the Jülich nuclear research facility presented some studies on molten salt reactors, which ultimately received no attention because of the negative attitude of the then head of reactor development, Rudolf Schulten [main developer of the pebble bed reactor design, a non fluid fuel system].

    代替原子炉の受け入れの欠如のもう一つの理由は、世界中の原子力産業の関心の絶対的な欠如でした。古典的な原子炉では、優れたお金を稼ぐことができ、燃料棒の生産からの収入なしには誰もやりたがらなかった。したがって、腐食のリスクが高いとされるものや、誰かが原子炉を誤用して兵器級の核分裂性物質を製造するという仮説的な危険性など、溶融塩反応器の使用に反対するあらゆる種類のふりをした議論が持ち込まれた。

    Another reason for the lack of acceptance of the alternative reactor type was the absolute lack of interest of the nuclear industry around the world. With the classic nuclear reactors, excellent money could be earned, and no one wanted to do without the income from the production of fuel rods. Therefore, all sorts of pretended arguments against the use of molten salt reactors were brought into play, such as the allegedly higher risk of corrosion and the hypothetical danger that someone will misuse the reactors to produce weapons-grade fissile material.

    これは、中華人民共和国が2011年以来、TMSR-LF1の開発に4億ユーロ相当を投資することを妨げていない。結局のところ、北京の指導者たちは、2050年までに中国を「クライメートニュートラル」にするという野心的な目標を追求しており、溶融塩反応器の「完璧な技術」は絶対に不可欠であることを証明することができるだろう。

    This has not prevented the People’s Republic of China from investing the equivalent of 400 million euros in the development of the TMSR-LF1 since 2011. After all, Beijing’s leaders are pursuing the ambitious goal of making the Middle Kingdom “climate neutral” by 2050, and the “perfect technology” of molten salt reactors could prove absolutely indispensable.

    250MW溶融塩核分裂エネルギー発電設備 / 250 MW Molten Salt Fission Energy Power Facility

    現在ゴビ砂漠の端でテストされている原子炉は、当初の公称出力はわずか2メガワットです。これは、約1000世帯にしか電力を供給できないことを意味します。しかし、TMSR-LF1の設計原理が成功すれば、出力373メガワットのトリウム溶融塩反応器の最初のプロトタイプが2030年頃までに稼働し、その後、中国全土で同じプラントが急速に連続して稼働します。ドイツが今なお原子力から遠ざかり続けるのか、それとも今も「グリーン原子力エネルギー」に頼っているのかは、まだ分からない。

    The reactor, which is now to be tested on the edge of the Gobi Desert, initially has a nominal output of only two megawatts. This means that it can only supply around 1000 households with electricity. If the design principle of the TMSR-LF1 proves successful, however, the first prototype of a Thorium Molten Salt reactor with an output of 373 megawatts would go into operation by around 2030, which will then be followed by identical plants throughout China in rapid succession. It remains to be seen whether Germany will still remain in its abstinence from nuclear power at this time or whether it will now also rely on “green nuclear energy”.

    中国ゴビ砂漠溶融塩工業施設 / Chinese Gobi Desert Molten Salt Industrial Facility
    ゴビ砂漠溶融塩インスタレーション / Gobi Desert Molten Salt Installation

    Development of GH3535 Alloy for Thorium Molten Salt Reactor

    Wuwei, Gansu, China


    PreußischeAllgemeineZeitung(PAZ)は、ドイツのメディア業界で唯一の声です。毎週、政治、文化、ビジネスの現在の出来事を報告し、私たちの社会の根本的な発展を支持しています。彼らの作品の中で、編集者は伝統的なプルーセンの価値観にコミットしていると感じています。古いプルーセンは、宗教的および思想的寛容、祖国への愛情と寛容さ、法の支配と知的誠実さ、そして特に社会のすべての分野での理由に基づく行動。このことを念頭に置いて、PAZはオープンな議論の文化を維持しています。これは、情熱的に独自の視点を表し、異なる考え方をする人々の意見を尊重し、発言権を与えます。日々の出来事を超えて、PAZは歴史的なプロイセンを思い出し、その文化遺産を大切にすることにコミットしていると感じています。これらの原則により、PreußischeAllgemeine Zeitungは、昨日、今日、明日、西と東の国と地域の間、そして私たちの国のさまざまな社会の流れの間のユニークなジャーナリズムの架け橋です。

    The Preußische Allgemeine Zeitung (PAZ) is a unique voice in the German media landscape. Week after week, it reports on current events in politics, culture and business and takes a stand on the fundamental developments in our society. In their work, the editors feel committed to the traditional Prussian canon of values: The old Prussia stood and stands for religious and ideological tolerance, for love of homeland and open-mindedness, for the rule of law and intellectual honesty, and not least for reason-guided action in all areas of society . With this in mind, the PAZ maintains an open culture of debate, which passionately represents its own point of view and respects the opinions of those who think differently – and also lets them have their say. Beyond day-to-day events, the PAZ feels committed to remembering historical Prussia and caring for its cultural heritage. With these principles, the Preußische Allgemeine Zeitung is a unique journalistic bridge between yesterday, today and tomorrow, between the countries and regions in West and East – as well as between the different social currents in our country.


    Translation courtesy of Duck Duck GoYour personal data is nobody’s business.

    Like the article? Give payments directly to PAZ here, Anerkennungszahlung

    Support us to make more bilingual offerings like this via our Patreon.


    Links and References

    1. Original article: https://paz.de/artikel/perfekte-technologie-a6180.html
    2. https://paz.de/impressum.html
    3. https://english.sinap.cas.cn/
    4. https://www.ans.org/news/article-3091/china-moves-closer-to-completion-of-worlds-first-thorium-reactor/
    5. https://en.wikipedia.org/wiki/Thorium
    6. https://de.wikipedia.org/wiki/Forschungszentrum_J%C3%BClich
    7. https://en.wikipedia.org/wiki/Rudolf_Schulten
    8. https://en.wikipedia.org/wiki/Pebble_bed_reactor
    9. https://en.wikipedia.org/wiki/Aircraft_Reactor_Experiment
    10. https://en.wikipedia.org/wiki/Aircraft_Nuclear_Propulsion
    11. https://www.nextbigfuture.com/2017/12/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones.html
    12. https://regulatorwatch.com/reported_elsewhere/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones/
    13. https://www.nuclearaustralia.org.au/wp-content/uploads/2021/04/Mark_Ho_20210512.pdf
    14. http://samofar.eu/wp-content/uploads/2019/07/2019-TMSR-SAMOFAR%E2%80%94%E2%80%94Yang-ZOU-PDF-version-1.pdf
    15. https://threeconsulting.com/mt-content/uploads/2021/04/chinatmsr2018.pdf
    16. https://www.gen-4.org/gif/upload/docs/application/pdf/2017-05/03_hongjie_xu_china.pdf
    17. https://msrworkshop.ornl.gov/wp-content/uploads/2018/04/MSR2016-day1-15-Hongjie-Xu-Update-on-SINAP-TMSR-Research.pdf
    18. https://www.researchgate.net/publication/324580866_Development_of_GH3535_Alloy_for_Thorium_Molten_Salt_Reactor
    19. Wuwei, Gansu, China
    20. https://tcw15.mit.edu/sites/default/files/documents/TMSRstatus-liuwei.pdf
    21. https://paz.de/anerkennungszahlung.html
    22. https://www.patreon.com/TheThoriumNetwork
    23. https://help.duckduckgo.com/results/translation/

    #PreußischeAllgemeineZeitung #PAZ #ShanghaiInstituteofAppliedPhysics #SINAP #ThoriumMoltenSalt #MoltenSaltFissionEnergyTechnology #MSFET #Thorium #Japan