Category: Linear No Threshold Theory

  • An Engineers’​ Point of View on Thorium: Unwrapping the Conspiracy

    Preface

    I have written this article exclusively for The Thorium Network(1) on the basis that I remain anonymous – my livelihood depends on it. I completed my nuclear engineering degree in the late 2000’s and shortly thereafter found a position in a semi-government owned nuclear power station – with several PWRs to look after. One year after graduating and commencing my professional career, I discovered the work of Dr. Alvin Weinberg(2) and began conducting my own research.

    My anonymity is predicated on my experience during this time of intense study and learning. As a young female graduate when I shared my enthusiasm for this technology I faced harassment and derision from my male colleagues, from high level government officials and also, unfortunately, from my university professors, whom I initially turned to for help. It wasn’t long before I started to keep my research and my thoughts to myself.

    I have found Women In Nuclear(3) to be most supportive and conducive to fostering and maintaining my interest in this technology, though even there it remains a “secret subject”.

    So when I discovered The Thorium Network(1), I decided it was a good platform to tell my story. I look forward to the time when there is an industry strong enough to support engineers like me full time, so we can leave our positions in the old technology and embrace the new.

    My Studies – No Thorium?

    As a nuclear engineer, I was trained to understand the intricacies of nuclear reactions and the ways in which nuclear power could be harnessed for the betterment of humanity.

    During my time in university, I learned about various types of reactors, including pressurized water reactors, boiling water reactors, and fast breeder reactors.

    Phew!

    However, one type of technology that was never mentioned in my coursework was the Thorium Molten Salt Burner (TMSB). Or “Thorium Burner” as my friends like to say. “TBs” for short. I like it too. Throughout my article I also refrain from using traditional words and descriptions. The nuclear industry must change and we can start by using new words.

    Shortly after graduating I stumbled upon information about TBs from the work of the famous chemist and nuclear physicist, Dr. Alvin Weinberg(2). TBs have enormous potential and are the future of nuclear energy. I can say that without a doubt. I was immediately struck by the impressive advantages that TBs offer compared to the technologies that I had learned about in school. I found myself wondering why this technology had not been discussed in any of my classes and why it seemed to be so overlooked in the mainstream discourse surrounding nuclear energy and in particular in today’s heated debates on climate change.

    What are TBs – Thorium Burners

    To understand the reasons behind the lack of knowledge and recognition of TBs, it is first important to understand what exactly TBs are and how they differ from other types of fission technologies. TBs are a type of fission device that use Thorium as a fuel source, instead of the more commonly used uranium or plutonium. The fuel is dissolved in a liquid salt mixture*, which acts as the fuel, the coolant and the heat transfer medium for taking away the heat energy to do useful work, like spin a turbine to make electricity, or keep an aluminum smelter bath hot**. This design allows for a number of benefits that old nuclear technology does not offer.

    *A little tip: the salt is not corrosive. Remember, our blood is salty but we don’t rust away do we.

    ** I mention aluminum smelting because it too uses a high fluorine based salt – similar to what TBs use. And aluminum is the most commonly used metal on our planet. You can see more on this process here: Aluminum Smelting(4)

    Advantages of TBs

    One of the most significant advantages of TBs is their inherent safety. They are “walk away safe”. Because the liquid fuel is continuously circulating, and already in a molten state, there is no possibility of a meltdown. If the core region tries to overheat the liquid fuel will simply expand and this automatically shuts down the heating process. This is known as Doppler Broadening(5).

    Additionally, the liquid fuel is not pressurized, removing any explosion risk. It just goes “plop”.

    These physical features make TBs much safer than traditional machines, which require complex safety systems to prevent accidents. Don’t misunderstand me, these safety systems are very good (there has never been a major incident in the nuclear industry from the failure of a safety system), but the more links you have in a chain the more chances you have of a failure. TBs go the other way, reducing links and making them safer by the laws of physics, not by the laws of man.

    Another advantage of TBs is their fuel utilization. Traditional machines typically only use about 3% of their fuel before it must be replaced. In contrast, TBs are able to use 99.9% of their fuel, resulting in effectively no waste and a much longer fuel cycle (30 years in some designs). This not only makes TBs more environmentally friendly – how much less digging is needed to make fuel – but it also makes them more cost-effective.

    TBs are also more efficient than traditional machines. They are capable of operating at higher temperatures (above 650 degrees C), which results in increased thermal efficiency and a higher output of electricity per unit of fuel. This increased efficiency means that TBs require even less fuel to produce the same amount of energy, making them even more a sustainable option for meeting our energy needs.

    The Conspiracy

    Ever wonder why all the recent “conspiracy theories” have proven to be true? It looks like Thorium is another one. It’s just been going on for a long, long time.

    So why, then, was I never taught about TBs in university? The answer to this question is complex and multi-faceted, but can all be traced back to one motive: Profit. The main factor that has contributed to the lack of recognition and support for TBs is the influence of the oil and fossil fuel industries. These industries have a vested interest in maintaining the status quo to preserve their profits. They have used their massive wealth and power to lobby against the development of competitive energy sources like TBs. Fossil fuel companies have poured billions of money into political campaigns and swayed public opinion through their control of the media. This has made it difficult for TBs to receive the funding and recognition they need to advance, as the fossil fuel industries work to maintain their dominance in the energy sector.

    First Hand Knowledge – Visiting Oak Ridge

    During my research I took a trip to Oak Ridge National Laboratory in Tennessee, where the first experimental Thorium Burner, the MSRE – the Molten Salt Reactor Experiment – was built and operated in the 1960s. During my visit, I had the chance to speak with some of the researchers and engineers who had worked on the MSRE – yes some are still around. It was amazing to speak with them. I learnt first hand about the history of TBs and their huge potential that they have. I also learnt how simple and safe they are. They called the experiment “the most predictable and the most boring”. It did everything they calculated it would do. That’s a good thing!

    The stories I heard from the researchers and engineers who worked on the MSRE were inspiring but also concerning. They spoke of the tremendous potential they saw in TBs and the promise that this technology holds for the future of meeting world energy demands. They also spoke of the political and funding challenges that they experienced first hand. The obstacles that prevented TBs from receiving the recognition and support they needed to advance. They were told directly to destroy all evidence of their work on the technology when Dr. Alvin Weinberg was fired as their director in 1972 and the molten salt program shut down. This was done under Nixon’s watch. You can even hear Nixon do this here on this YouTube(6) clip. Keep it “close to the chest” he says. I am surprised that this video is still up on YouTube considering the censorship we’ve been experiencing in this country in the past few years.

    1971 Nixon Phone Call – Nixon Speech on Jobs in California – TR2016a

    The experiences at Oak Ridge confirmed to me that TBs are a promising and innovative technology that have been marginalized and overlooked clearly on purpose. On purpose to protect profits of other industries. It was inspiring to hear about the dedication and passion of the researchers and engineers who worked on the MSRE, and it reinforced my belief in the potential of TBs to play a major role in meeting our energy needs in a sustainable and safe manner. I am hopeful that, with increased investment and support, TBs will one day receive the recognition and support they deserve, and that they will play a significant role in shaping the future of energy.

    Moving On – What is Needed

    Despite the challenges, I believe that TBs have a promising future in the world of energy from the Atom. They offer a number of unique benefits that can clearly address the any minor concerns surrounding traditional nuclear energy machines, such as safety and waste management. They are also the answer for world energy.

    Countering the Vested Interests – Education and Awareness

    In order for TBs to become a more widely recognized and accepted technology, more funding – both public and private – is needed to revamp the research and development conducted in the 1950’s and 1960’s. Additionally, education and awareness about the potential of TBs must be raised, in order to dispel any misconceptions and address the stigma that still surrounds nuclear energy, and to counter the efforts that are still going on even today, to stymie TBs from becoming commercial.

    In order to ensure that TBs receive the support they need to succeed, it is necessary to counter the influence of the oil and fossil fuel industries and to create a level playing field for competitive energy sources. This will require a concerted effort from the public, policymakers, and the private sector to invest in and promote the development of TBs.

    Retiring Aging Assets and Funding New Ones

    There’s also another factor that also needs to be addressed the same way as the oil and fossil fuel industries and that is the existing industry itself. The nuclear industry has long been dominated by a few large companies, and these companies have a vested interest in maintaining the status quo and investing in traditional reactor technology. This includes funding universities to train people such as myself. This has made it difficult for TBs to gain traction and receive the funding they need to advance.

    An Industry Spawned: Non Linear Threshold (LNT) and As Low As Reasonably Achievable (ALARA)

    A third reason is the prodigious amount of money to be made in maintaining the apparent safety of the existing nuclear industry. This was something else I was not taught in school – about how fraudulent science using fruit flies was railroaded by the oil industry (specifically the Rockefellers) to create a cost increasing environment for the nuclear industry to prevent smaller and smaller amounts of radiation exposure. Professor Edward Calabrese(7) taught me the most about this. You must watch his interviews.

    What has grown from this is a radiation safety industry – and hence a profit base – with a life of it’s own. I see it every single working day. It holds tightly to the vein that radiation must at all costs (and all profits) be kept out of the public domain. Again a proven flawed premise but thoroughly supported by the need, and greed, of the incumbent industry to maintain the status quo.

    Summing Up – Our Future

    In conclusion, as someone who studied nuclear engineering but never learned about Thorium Molten Salt Technology, I am disappointed that I was not given the opportunity to learn about this promising and innovative technology during my time in university. However, I am also grateful to have discovered it now, particularly with my professional experience in the sector. I am eager to see how TBs will continue to evolve and change the face of energy worldwide. With the right support and investment, I believe that TBs have the potential to play the main role in meeting our energy needs in a sustainable and safe manner, and I hope that they will receive the recognition they deserve in the years to come.

    Miss A., Space Ship Mother Earth, 2023.

    References and Links

    1. https://TheThoriumNetwork.com/
    2. https://en.wikipedia.org/wiki/Alvin_M._Weinberg
    3. https://win-global.org/
    4. https://aluminium.org.au/how-aluminium-is-made/aluminium-smelting-chart/
    5. https://www.nuclear-power.com/glossary/doppler-broadening/
    6. Nixon Ends Thorium https://www.youtube.com/watch?v=Mj5gFB5kTo4
    7. https://hps.org/hpspublications/historylnt/episodeguide.html

    Tags

    #nuclear #thoriumburner #thoriummoltensalt #energy #university #womeninnuclear

  • Liquid Fission Energy powered by Thorium – A Technological Breakthrough

    The history and development of Liquid Fission Energy powered by Thorium is a fascinating one, with many twists and turns that have shaped the direction of the technology. In the 1950s, President Dwight Eisenhower initiated the “Atoms for Peace”(1) program, which was designed to break the military-industrial complex and promote the peaceful use of nuclear energy. This enthused a number of scientists, including Dr. Alvin Weinberg(2) and Dr. Eugene Wigner, who already saw the potential for using nuclear energy as a clean and abundant source of power and where dismayed at the use of their work on the Manhattan Project to kill massive numbers of women and children(3).

    The development of Molten Salt Fission Technology powered by Thorium can be traced back to the 1950s and 1960s, when a group of scientists and engineers at Oak Ridge National Laboratory in Tennessee started working on the concept. They were looking for a way to improve the safety and efficiency of nuclear energy without creating a path to weapons, and they saw the potential in using thorium as a fuel. Thorium is a naturally occurring element that is abundant in many parts of the world, and it can be used to produce nuclear energy without the risk of weapons proliferation(4).

    However, despite this initial enthusiasm, in the 1970’s the development of Molten Salt Fission Energy was soon stymied by a number of obstacles. One of the main challenges had been the introduction of the Linear Non Threshold (LNT) and As Low as Reasonably Achievable (ALARA) principles by the Rockefellers, who intended to limit the growth of nuclear energy in order to protect their oil businesses. This was done by feeding on the fear of the unknown among the uneducated public and by using the fraudulent work of Professor Hermann Muller from his 1928 fruit fly research(5). As John Kutsch points out in his presentation(6), this was a critical turning point in the development of fission technology.

    LNT & ALARA: Linear No-Threshold & As Low As Reasonably Achievable by John Kutsch @ TEAC11

    One of the key figures against the development was Hyman Rickover(7). Rickover was a bulldog of a man, determined to have pressure water fission machines running on uranium installed in his submarines. He was equally determined to redirect public funds away from the development of Molten Salt Fission Technology. This was because he couldn’t use that technology for his submarines and wanted the money for his own research programs. Despite these efforts, however, the development of Molten Salt Fission Technology powered by Thorium still continued.

    A major step in this development was the creation of the Molten Salt Reactor Experiment (MSRE) at the Oak Ridge National Laboratory in Tennessee. The MSRE was designed to test the feasibility of using molten salt as both a coolant and fuel for a fission machine. The experiment was a huge success, proving that the technology was both safe and efficient. The MSRE operated from 1965 to 1969 and provided valuable data on the behavior of molten salt as a coolant and fuel. This data helped to lay the foundation for the continued development of Molten Salt Fission Technology, however 1972 saw the dismissal of Dr. Weinberg and the defunding of all Molten Salt work. Led by President Nixon, the hegemony was intent on snuffing out any competition, which Molten Salt Fission Technology clearly was.

    We remain in debt to Dr. Weinberg who continued to document, speak and promote their documented achievements until his passing in 2006 – just long enough for his material to be picked up and spread via the Internet(2).

    The next step in the development of Molten Salt Fission Technology was the creation of the Integral Fast Reactor (IFR) program(8). This program was initiated in the 1980s by the U.S. Department of Energy. The goal of the IFR program was to create a fission machine that was capable of recycling its own fuel, reducing the need for new fuel to be mined and demonstrating the efficient and safe use of high temperature molten systems – those ideally suited for Thorium Fission. The IFR program was a huge success, demonstrating the feasibility of closed fuel cycles for fission machines. The IFR program also provided valuable data on the behavior of fast-neutron-spectrum fission burners, which are critical components of modern fission technology. And, true to form. this program also suffered at the hands of it’s competition with the program being cancelled 3 years before it was completed in 1994 by Clinton and his oil cronies. Ironically, at the same time that excuses where being pushed through Congress to defund the program by Clinton and Energy Secretary Hazel R. O’Leary, O’Leary herself awarded the lead IFR scientist, Dr. Yoon Chang of Argonne Labs, Chicago(9) with $10,000 and a gold medal, with the citation stating his work to develop IFR technology provided “improved safety, more efficient use of fuel and less radioactive waste.”

    “My children were wondering, Why are they are trying to kill the project on the one hand and then giving you this award?” Chang said with a chuckle. “How ironic. I just cannot understand how a nation that created atomic energy in the first place and leads the world in technology in this field would want to take a back seat on waste conversion,” Chang said. “I also have confidence in the democratic process that the true facts and technological rationale will prevail in the end.” Dr. Chang during an interview published 8 February 1994 by Elaine S. Povich(10), then a Chicago Tribune Staff Writer(11).

    Despite these setbacks, there has been a resurgence of interest in Molten Salt Fission Energy in recent years, with a number of programs and initiatives being developed around the world. In France, the National Centre for Scientific and Technical Research in Nuclear Energy( CRNC ) is working on a number of projects related to this technology, including the development of a prototype fission burner. In Switzerland, ETH Zurich (home of Einstein’s work on E=mc^2) is also exploring the potential of Molten Salt Fission Energy, with a number of projects underway.

    There are also a number of other countries that are actively pursuing Molten Salt Fission Energy, including the Czech Republic, Russia, Japan, China, the United States, Canada, and Australia. Each of these countries has its own unique approach to the technology, and is working to advance the state of the art in different ways.

    In conclusion, the history and development of Molten Salt Fission Technology powered by Thorium is a fascinating subject that highlights the innovations and advancements in the field of nuclear energy. From the “Atoms for Peace” program initiated by President Dwight Eisenhower, which attracted prominent scientists like Dr. Alvin Weinberg and Dr. Eugenie Wigner, to the efforts of Hyman Rickover to redirect public funds away from the technology, this technology has faced numerous challenges along the way. The introduction of Linear Non Threshold (LNT) and As Low as Reasonably Achievable (ALARA) by the Rockefellers in an effort to stop the growth of nuclear energy and the fraudulent work of Professor Hermann Muller have also played a significant role in the history of this technology.

    Despite these challenges, the potential benefits of using Thorium as a fuel source for fission burners are significant. The technology is considered safer and more efficient than traditional nuclear reactors, and it has the potential to produce much less nuclear waste. Additionally, the abundance of Thorium on Earth makes it a more sustainable source of energy than other options, such as uranium.

    While much work remains to be done to fully realize the potential of Molten Salt Fission Technology powered by Thorium, the future looks bright. In the next 15 years, we can expect to see significant advancements in the technology in many parts of the world, including new designs and prototypes that will demonstrate the full potential of this technology. And, in our children’s’ children’s future, 50, years and more, we can imagine a world where Molten Salt Fission Technology is the main component of our energy infrastructure, providing clean, safe, and sustainable energy for everyone.

    Totoro knows Atoms

    Links and References

    1. https://thethoriumnetwork.com/2022/10/04/confidence-in-nuclear-energy-the-acceptance-of-evidence-should-replace-traditional-caution/
    2. https://www.patreon.com/posts/dr-alvin-m-of-39262802
    3. https://thethoriumnetwork.com/2022/02/26/episode-8-more-beer-more-bananas-unintended-consequences-chapter-3-part-2/
    4. https://thethoriumnetwork.com/2022/06/02/episode-21-proliferation-not-on-our-watch-unintended-consequences-chapter-8-part-5/
    5. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
    6. “John Kutsch – Using Thorium to Revolutionize the Energy Industry – YouTube.” YouTube, 11 Oct. 2018, https://www.youtube.com/watch?v=AmWvxNeBNlU
    7. https://thethoriumnetwork.com/2022/04/07/episode-13-whats-so-great-about-nuclear-power-unintended-consequences-chapter-6-part-1/
    8. https://en.wikipedia.org/wiki/Integral_fast_reactor
    9. https://www.linkedin.com/in/yoon-chang-a479205/
    10. https://www.linkedin.com/in/elaine-povich-33204813/
    11. https://www.chicagotribune.com/news/ct-xpm-1994-02-08-9402080355-story.html
    12. “Atoms for Peace.” Department of Energy, DOE, www.energy.gov/artificial-intelligence-and-technology-office/atoms-peace.
    13. “Linear No-Threshold Theory.” Wikipedia, Wikimedia Foundation, 17 Nov. 2020, en.wikipedia.org/wiki/Linear_no-threshold_theory.
    14. “As Low As Reasonably Achievable (ALARA) | Radiation Protection | US EPA.” Environmental Protection Agency, 19 Oct. 2020, www.epa.gov/radiation/as-low-reasonably-achievable-alara.
    15. “Hyman Rickover.” Wikipedia, Wikimedia Foundation, 12 Dec. 2020, en.wikipedia.org/wiki/Hyman_Rickover.
    16. “Hermann Joseph Muller.” Wikipedia, Wikimedia Foundation, 18 Nov. 2020, en.wikipedia.org/wiki/Hermann_Joseph_Muller.
    Future Cities Aren't What You Think
    Future Cities Aren’t What You Think

    #Thorium #ThoriumMoltenSalt #ALARA #LNT #Weinberg

  • Confidence in Nuclear Energy – The acceptance of evidence should replace traditional caution

    By Wade Allison, professor of physics at Oxford University. Written 20 September 2022

    Wade Allison is emeritus professor of physics at Oxford University and author of Radiation and Reason, and Nuclear is for Life.

    Though an ideal energy source, nuclear made an unfortunate entry into world affairs. Accompanied by frightening tales of destruction it failed early on to gain the confidence required of a leading contributor to future human prosperity. Is radioactivity and nuclear radiation particularly dangerous? It has been wielded as a political weapon for 70 years. But does the myth of a possible radiation holocaust have objective substance? The inhibition that surrounds nuclear radiation obstructs the optimum solution to real dangers today – climate change, the supply of water, food and energy, and socio-economic stability.

    Is radioactivity and nuclear radiation particularly dangerous? It has been wielded as a political weapon for 70 years. But does the myth of a possible radiation holocaust have objective substance?

    Professor Wade Allison

    Primary Energy Sources

    By studying the natural world, humans have succeeded where other creatures failed. Satisfying our needs depends on understanding the benefits that nature offers. In particular, the study of energy and the acceptance by society of improved sources have been critical to prospects for the human race several times in the past. The first occasion was pre-historic, perhaps 600,000 years ago, when fire was domesticated. Confidence and good practice spread through the use of speech and education. Then came the harnessing of sunshine and the weather, delivered by windmills, watermills and the growth of food and vegetation. Nevertheless, these energy supplies were weak and notoriously unreliable. Additional energy was routinely provided by slave labour and teams of animals. Generally though, life was short and miserable.

    The use of fossil fuels and their reliable engines began in the 18th Century and displaced the use of intermittent sources. Life was transformed for those who had the fuels. Health, sport, holidays, leisure and human rights flourished, all previously unavailable. Political affairs were largely concerned with which people had access to fossil fuels. Though fossil fuels were never safe or environmental, their combustion probably triggered, if not caused, changes to the climate. Consequently, the decision was taken in Paris in 2015 to discontinue their use. What should replace them? And how may we live in a climate that is never likely ever to revert to the way it was?

    Fortunately, natural science today has a firm and complete account of energy – that is apart from one or two intriguing cosmological goings-on such as “dark matter”. Secondary sources, such as hydrogen, ammonia, batteries, electricity and biofuels, are beside the point, because they need to be generated from some primary source, and it’s the latter we need to secure. The weak, unreliable and weather-dependent primary sources that failed previously continue to be inadequate. Without fossil fuels, that leaves only one widely available source, sufficient to support the continuation of society as we know it, namely nuclear energy[1]. It ticks every box, except that many know little about it and are wary of it.

    One who learnt early was Winston Churchill. In 1931 he wrote prophetically in the Strand Magazine that nuclear energy is a million times that of the fuel that powered the Industrial Revolution[2].

    One who learnt early was Winston Churchill. In 1931 he wrote prophetically in the Strand Magazine that nuclear energy is a million times that of the fuel that powered the Industrial Revolution[2]

    Professor Wade Allison

    Both chemical and nuclear energy can be released explosively. Unfortunately, it was as a weapon that many in society first heard about nuclear energy. Released in anger at Hiroshima and Nagasaki in 1945, the combination of blast and fire produced was fatal to the majority of inhabitants within a mile or two. Those much further away were not affected, nor were those who came to the site weeks afterwards. The result of the nuclear bombs was similar to the destruction by conventional explosives and fire storm in WWII of Tokyo, Hamburg and Dresden – or by explosives in recent years of Chechnya, Aleppo and Mariupol – except that it may come from a single device.

    It comes as a surprise to many people that nuclear radiation makes no major contribution to the mortality of a nuclear explosion, even in later years[3]. That is not what they have been told. What is the truth and why has it remained hidden?

    Wade Allison: “The Fukushima nuclear accident and the unwarranted fear of low-dose radiation”

    Is Radiation a Danger to Life?

    A great deal has been learnt about the effect of radiation on life in the past 120 years. When nuclear radiation was discovered by Marie Curie[4] and others in the last years of the 19th Century, they took great care to study its effect on life. Shortly thereafter, high doses were used successfully to cure patients of cancer, as they still are today. Millions of people have reason to be thankful as a result.

    As with any new technology, much was learnt from accidents and mistakes in the early days. But by 1934 international agreement[5] had been reached on the scale of a safe radiation dose, 0.2 roentgen per day – in modern units, 2 milli-gray (or milli-Sievert) per day. In 1980 Lauriston Taylor (1902-2004), the doyen of radiation health physicists, affirmed[6] that “nobody has been identifiably injured by a lesser dose”– a statement that remains true today.

    At first sight it is strange that ionising radiation, with its energy easily sufficient to break the critical molecules of life, should be harmless in low and moderate doses. And it does indeed break such molecules indiscriminately, but living tissue fights back because it has evolved the ability to do so. In early epochs the natural radiation environment on Earth was more intense than today. Life would have died out long ago, if it had not developed multiple layers of defence. These act within hours or days by repairing and replacing molecules and whole cells, too. Control of these mechanisms was devolved to the cellular level long ago, and it is a mistake for human regulations to try to micromanage the protection already provided by nature. So, although the details of natural protection and its workings are still being discovered today, the effectiveness of the safety it provides were known and agreed already in 1934.

    But then in the mid-1950s, in spite of initiatives like “Atoms for Peace” by President Eisenhower, human society lost its nerve about nuclear energy and its radiation. What went wrong?

    Record Group 306 Records of the U.S. Information Agency, 1900-2003 Still Pictures Identifier: 306-PPB-81a

    But then in the mid-1950s, in spite of initiatives like “Atoms for Peace” by President Eisenhower, human society lost its nerve about nuclear energy and its radiation. What went wrong?

    Professor Wade Allison
    Atoms For Peace Speech – Eisenhower 1953

    When fear hid the benefits of nuclear and its radiation

    Few today are old enough to remember those days, as I do. The 1950s was an unpleasant time with military threats abroad, spying, secrecy and mistrust at home. In the USA it was the era of Senator Joseph McCarthy[7] when all manner of innocent people were accused of being communist sympathisers or Soviet agents. Suspicion was everywhere. Already following the nuclear bombing of Hiroshima and Nagasaki, knowledge of nuclear radiation was seen as a “no-go” area, supposedly too difficult to understand and beyond the educational paygrade of normal people. After the War a vast employment structure, the industrial military complex, continued to develop, test and stockpile nuclear weapons to the horror of large sections of the populace, worldwide. They were supported in their concern by many scientists, including Albert Einstein, Robert Oppenheimer, Andre Sakharov and many Nobel Laureates. Whether they were knowledgeable in radiobiology or not – and few were – they did not trust the judgement of the military and political authorities with this new energy and its million-fold increase. Everybody was frightened that the power might fall into foreign hands or be used irresponsibly by allies. This fear increased after 1949 when the Soviet Union detonated its first nuclear device[8]. As the years went by, ever larger popular marches and political demonstrations attempted to halt the nuclear Arms Race with the USSR, frequently alarming civil authorities with their threats to law and order.

    This civil disturbance had more success in stopping the Arms Race when it focused on the biological effects of nuclear radiation. Few in the industrial military complex knew much about this – they were mostly engineers, physical and mathematical scientists. In truth, few other scientists did either and in the absence of data were easily alarmed. The concern was that irreparable radiation damage incurred by the human genome might be transmitted to subsequent generations. Such a prediction was made by Hermann Muller, a Nobel Prize winning geneticist – without any evidence. A ghoulish spectre of deformed descendants was eagerly adopted by the media as real. The popular magazine Life, dated May 1955 page 37, explicitly quoted Muller, saying “atomic war may cause” such hereditary damage (emphasis added). The qualification of the possibility was lost on the media and general public – the horror was seen as just too awful. It was widely taken as likely to be true by academic opinion, too, as there was no evidence to deny it.

    Herman Muller
    Herman Muller, LIFE Magazine, 1957

    Significantly, it is not difficult to detect levels of radiation exposure many thousand times lower than the level accepted as safe in 1934[5]. Anxious to quell popular pressure, regulatory authorities acceded to a regime in which life should be spared any radiation exposure above a level As Low As Reasonably Achievable (ALARA). For the public, the advice was set at 1 milli-Sievert per year, a modest fraction of the typical natural background received from rocks and space. National regulatory authorities, concerned to protect themselves from liability, readily adopted the advice of the International Commission for Radiological Protection (ICRP) under the auspices of the United Nations.

    These regulations are based, not on evidence, but on a philosophy of caution, namely that any exposure to radiation is harmful and that all such damage accumulates throughout life – in denial of the natural protection provided by evolution. A discredited ad hoc theory of risk, the Linear No Threshold model (LNT)[9,10], supplanted the Threshold Model of 1934 at the behest of the BEAR Committee of the US Natural Academy of Sciences in 1956.

    A discredited ad hoc theory of risk, the Linear No Threshold model (LNT) [9,10], supplanted the Threshold Model of 1934 at the behest of the BEAR Committee of the US Natural Academy of Sciences in 1956.

    Professor Wade Allison

    Such excessive caution incurs huge extra costs. Worse, adherence to ALARA/LNT regulations has caused serious social and environmental damage – for instance, in the response to the accidents at Chernobyl and Fukushima Daiichi. International bodies and committees, unlike individuals, stick rigidly to their terms of reference. So, the ICRP still supports ALARA/LNT today[11] and advocates protection which is not necessary – except in extreme cases.

    What about these extreme cases? Muller supposed that an exposure to radiation can alter a person’s genetic code and that this error can then be passed onto off-spring. But the medical records of the survivors from Hiroshima and Nagasaki, their children and grandchildren[12] never supported this. As a result, nobody today maintains that there is any evidence for such inheritable genetic changes. This is confirmed in animal experiments, and was accepted even by the ICRP in 2007[11] – to be precise they lowered their estimated genetic risk factor by an order of magnitude. So Muller was wrong[10]. Incidentally, he was also wrong about the evidence for which he received the Nobel Prize in 1946.

    So Muller was wrong [10]. Incidentally, he was also wrong about the evidence for which he received the Nobel Prize in 1946.

    Professor Wade Allison

    Dedicated to protect people against radiological damage, the ICRP focused on the induction of cancer by radiation instead of inheritable genetic defects. The medical history of 87,000 survivors of Hiroshima and Nagasaki, along with their children, have been followed since 1950. Data on solid cancers and leukaemia in 50 years and their correlation with individually estimated exposures have been published by DL Preston et al ([13], Tables 3 and 7). Inevitably, some survivors died from these diseases anyway, but their numbers are allowed for by comparing with distant residents who received no dose, being too far away. Some 68,000 survivors received a dose less than 100 milli-Sievert and these showed no evidence of extra cancers. Altogether, between 1950 and 2000 there were 10,127 deaths from solid cancers and 296 from leukaemia – 480 and 93, respectively, more than expected on the basis of data for those not irradiated. This number of extra deaths, 573, is significant, but less than half a percent of those who died from the blast and fire. Furthermore, it is only a third of the number of deaths reported as caused by the unnecessary and ill-judged evacuation at Fukushima Daiichi[14], an accident in which nobody died from radiation, or is likely to. Evidently, the fear of radiation can be far more life-threatening than its actual effect, even as recorded in the bombing of two large cities. This conclusion in no way belittles the enormous loss of life from the blast and fire of a nuclear explosion with its localised range and limited duration.

    The medical history of 87,000 survivors of Hiroshima and Nagasaki, along with their children, have been followed since 1950.

    Professor Wade Allison

    But it is important to check that all available evidence corroborates this conclusion. How are other biological risks checked? A new vaccine is checked with blind tests in which patients are unaware of whether they have been treated or been given a placebo. In similar studies with radiation on groups of animals[15], one is irradiated every day throughout life and the other not. Those irradiated daily show a threshold of about 2 milli-Sievert per day for additional cancer death or other life shortening disease, similar to the threshold set in 1934. In fact doses below threshold increase life expectancy and the same is found for humans[16].

    At Chernobyl 28 fire fighters died of acute radiation syndrome in a short time[17], 27 from doses above 4000 milli-Sievert and 1 from a dose between 2000 and 4000 milli-Sievert. There were 15 deaths from thyroid cancer (but opinion is divided on these). Other cases of ill health were related to severe social and mental disturbance. Being told “you have been irradiated and are being evacuated immediately” is disorientating. Like Voodoo or a mediaeval curse, it can be life-threatening. Notably, the wild animals in the Chernobyl Exclusion Zone are thriving, as seen on wildlife programmes[19, 20] – but then they have not been shown videos on the horrors of radiation!

    An important question is how human society has persisted with such a gross misperception for seventy years. Entertainment, courage and excitement are important emotional exercises that prepare us to face real dangers, although there is a need to distinguish fact from fiction. The Placebo Effect describes the genuine health benefits found by patients who think they have been treated when they have not. The Nocebo Effect is its inverse[21], that is where people who have not been harmed, suffer real symptoms as if they had. In the aftermath of the Fukushima accident families endured terrible suffering including family break up and alcoholism – as a direct consequence of regulations based on ALARA and LNT. If the regulations had been based on the 1934 threshold, no evacuation longer than a week would have been justified[22].

    The nuclear option for generations to come

    Evidently, committees that advocate regulation based on ALARA/LNT are harmful and should be disbanded. Future generations should be free to make informed decisions involving nuclear energy, in peace or war, unencumbered by the erroneous legacy of the 1950s.

    Evidently, committees that advocate regulation based on ALARA/LNT are harmful and should be disbanded.

    Professor Wade Allison

    In years to come, when reference is made to the “nuclear option” in other contexts, we may hope that it will be shorthand for “the best solution”. In medicine this is nearly true now. During a course of radiotherapy the healthy tissue close to a tumour receives a high dose – about 1000 milli-Gray, every weekday for several weeks. By spreading the treatment over many days, this healthy tissue just recovers, and radiologists ensure that this huge dose seldom causes a secondary cancer. This would be disastrous strategy according to LNT – in six weeks or so the equivalent of about 30,000 years at the precautionary dose limit of 1 milli-Sievert per year!

    Future generations should be free to make informed decisions involving nuclear energy, in peace or war, unencumbered by the erroneous legacy of the 1950s.

    Professor Wade Allison

    In future we should not allow ourselves to be blackmailed by fear of the radiation from a nuclear weapon. That may have terrified our parents, but we should ensure that our children understand that radiation is dangerous only in the immediate vicinity of a nuclear detonation where death is caused by the blast and fire. At school all teenagers should study natural science and understand how nuclear energy compares with other sources, for safety, availability, reliability, security and preservation of the environment[1]. Then they should go home and reassure their parents.

    In future we should not allow ourselves to be blackmailed by fear of the radiation from a nuclear weapon.

    Professor Wade Allison

    Professor Wade Allison, Oxford, United Kingdom, 20 September 2022


    Links and References

    1. Allison, W. Nature, Energy and Society (2020) https://www.mdpi.com/1784714 https://www.researchgate.net/publication/339629356_Nature_Energy_and_Society_A_scientific_study_of_the_options_facing_civilisation_today
    2. https://www.nationalchurchillmuseum.org/fifty-years-hence.html
    3. Allison, W. Radiation and Reason, The Impact of Science on a Culture of Fear ISBN 978-0-9563756-1-5 (2009), https://www.researchgate.net/publication/234037551_Radiation_and_Reason_The_Impact_of_Science_on_a_Culture_of_Fear
    4. Grammatikos PC, Pioneers of nuclear medicine, Madame Curie https://pubmed.ncbi.nlm.nih.gov/16868638/
    5. International Recommendations (1934) International Commission for Radiological Protection. https://www.icrp.org/images/1934.JPG
    6. Taylor LS, The Sievert Lecture 1980, health physics (1980) 39 851 https://scholar.google.co.uk/scholar?q=health+physics+1980+39+851&hl=en&as_sdt=0&as_vis=1&oi=scholart
    7. McCarthyism and the Red Scare https://millercenter.org/the-presidency/educational-resources/age-of-eisenhower/mcarthyism-red-scare
    8. https://en.wikipedia.org/wiki/Soviet_atomic_bomb_project
    9. Meyerson G, Siegel JA Epidemiology without Biology (2016) https://link.springer.com/article/10.1007/s13752-016-0244-4
    10. The History of the Linear No-Threshold Model, Health Physics Society (2022) http://hps.org/hpspublications/historylnt/index.html
    11. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4). https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
    12. National Research Council (1956). Effect of Exposure to the Atomic Bombs on Pregnancy Termination in Hiroshima and Nagasaki. Washington, DC: The National Academies Press. https://doi.org/10.17226/18776 .
    13. Preston DL et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates (2004) https://pubmed.ncbi.nlm.nih.gov/15447045/
    14. https://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster_casualties#UNSCEAR_Report
    15. Olipitz W et al, Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation (2012) https://ehp.niehs.nih.gov/doi/10.1289/ehp.1104294
    16. David E et al, Background radiation impacts human longevity and cancer mortality: reconsidering the linear no-threshold paradigm (2021) https://link.springer.com/article/10.1007/s10522-020-09909-4
    17. Report of the UN Chernobyl Forum Expert Group “Health”, Health effects of the Chernobyl accident and special health care programmes, World Health Organisation (2006) https://www.who.int/publications/i/item/9241594179
    18. BBC News, Science and Environment, Cameras reveal the secret lives of Chernobyl’s wildlife (2015) https://www.bbc.co.uk/news/science-environment-32452085
    19. Discovery Channel, Chernobyl Life in the Dead Zone (2012) http://t.co/puM2rwyBMH
    20. Pincher, H. New Scientist (2009) https://www.newscientist.com/article/mg20227081-100-the-science-of-voodoo-when-mind-attacks-body/
    21. Allison, W. BBC Viewpoint: We should stop running away from radiation (26 March 2011) https://www.bbc.co.uk/news/world-12860842
    22. https://www.ox.ac.uk/news-and-events/find-an-expert/professor-wade-allison
    23. https://en.wikipedia.org/wiki/Atoms_for_Peace
    24. https://www.youtube.com/watch?v=oxGSfOd1Dpc
    25. https://www.youtube.com/watch?v=A2syXBL8xG0
    26. https://amzn.to/3rGmgSG
    27. https://amzn.to/3EudS0h

    #Radiation #WadeAllison #ALARA #LinearNoThreshold #AtomsForPeace

  • A Crib Sheet for Journalists and Students of Thorium

    Are you a journalist – or a student – looking for the inside on Liquid Fission Thorium? Unlimited energy. Secure. Reliable. Well this page is for you.

    We’ve been asked many times for a summary of resources or key people to speak with.

    Are we biased? Of course we are. Read on and you’ll know why. You’ll probably want to Join Us too.


    A Future Powered by Thorium is our objective. We are leveraging the billions of USD in today’s value and millions of hours invested over 50 years ago in a technology that is demonstrably superior to anything else we have today.

    Here’s a summary of that work from Oak Ridge National Laboratories:

    The Molten-Salt Reactor Experiment from 1969

    We have this YouTube and other useful 3rd party links on our website here:

    The Thorium Knowledge Base

    See this chart of energy density from an Australian government website. Everything else pales into insignificance when compared to Liquid Fission Machines (also called MSR Molten Salt Reactors).

    ANSTO Energy Density Bar Chart
    ANSTO Energy Density Bar Chart

    Here’s a recent article from Germany we translated into Japanese. It contains a lot of information on China’s progress also. China is replicating the 1960’s USA program, publicly announcing in 2011 investing USD 3,3 billion and 700 engineers for the work. This is not about reinventing the wheel, it’s just remembering what we’ve done before. Remember also China and Australia worked together to create a replacement for the super alloy metal “Hastelloy”. This super metal was created in the 1950’s in the USA for their advanced nuclear programs and is only made today by two companies in the world – one in the USA and Mitsubishi. Now China has an alternative.

    The article also includes information on Japan’s liquid fission project –  FUJI.

    Here’s a list of must-do-interviews for background on Liquid Fission Thorium Energy or subjects related, such as radiation safety, the effects of Chernobyl and Linear No Threshold theory.

    Professor Geraldine Thomas
    Director of the Chernobyl Tissue Bank, the world’s preeminent knowledge base for all things related to the real effects of that industrial accident. Prof. Thomas is became staunchly pro-nuclear due to her directorship. George Monbiot – a former Greenpeace anti-nuc activist, and now no longer in Greenpeace and strongly pro nuclear – after an interview he also had with Prof Thomas he had as a writer for the UK’s Guardian. 

    George Monbiot on Wikipedia

    Geraldine Thomas on Wikipedia

    Chernobyl Tissue Bank

    Geraldine Thomas

    Mr. Daniel Roderick
    Former President and CEO of Westinghouse and then Toshiba Energy Systems. Danny steered the sale of  Westinghouse for Toshiba, securing a positive, multi billion USD outcome for Japan. Danny was also the leader of negotiations to secure USD 50 billion in funding for a new nuclear build in Türkiye (derailed by the 2016 attempted coup in Türkiye). Mitsubishi subsequently submitted (and withdrew)  a nuclear build in Sinop, Northern Türkiye. Rosatom (Russia) is now building a nuclear power station in Akkuyu, southern Türkiye.

    Daniel Roderick

    Dr. Adi Paterson
    Dr. Paterson is the former head of ANSTO and an advocate of Liquid Fission Thorium Energy Technology. During his 9 year tenure at ANSTO, Dr. Paterson steered Australia to membership of the Generation IV forum, kind of the United Nationals for advanced fission designs. This is no mean feat given Australia’s lack of much to do with nuclear energy. 

    Generation IV Forum

    Adi Paterson

    Dr. Resat Uzman
    Director of nuclear energy systems at Figes AS, of Türkiye. Dr. Uzman has more than 40 years experience in all things nuclear, Türkiye and rare earths – the materials where Thorium is often found bound with.

    Nukleer Enerji Seminer 3 Dr. Resat Uzmen
    Dr. Resat Uzmen

    Professor Berrin Erbay
    Senior lecturer and former dean of mechanical engineering at Osmangazi University, Türkiye Prof. Erbay has been liaising with the professors in Japan for several decades. You can see one of her presentations on the status of Liquid Fission Technology in Japan here on Youtube: 

    Berrin Erbay
    4. Nesil Nükleer Reaktör Teknolojileri Toplantısı

    Mr. Phumzile Tshelane
    Mr. Tshelane is a former CEO of NECSA South Africa, now holds various directorships across a wide range of industrial sectors. His position as head of a state owned nuclear technology development company gives him a particular view point on commercialisation of nuclear energy technologies.

    Mr. Phumzile Tshelane
    S3E6 Africa4Nuclear: The Story of Thorium

    Ms. Rana Önem
    Former president of the Thorium Student Guild. You should hear from someone discovered the benefits of Liquid Fission Thorium when studying their nuclear engineering degree. You can see Rana interviewing Dr. Uzman here. Follow the links at the end of the article to see her role as president of the Guild: 

    President – Ms. Rana Önem, Eng
    Fmr. President – Ms. Rana Önem, Eng

    An important subject to cover is linear no threshold theory – a fraudulent model of radiation management that, unfortunately, has spawned an industry of radiation protection and radiation safety keen on maintaining its own survival. This results in massive, unnecessary overspending on nuclear builds. Professor Edward Calabrese is a leading expert on this subject and you can watch a series of interviews with Ed here: 

    The History of the Linear No-Threshold (LNT) Model Episode Guide

    Together with Professor Jerry Cuttler, Ed presents clearly, laying out how LNT has demonstrably been proven false. (And consequently those that died at Fukushima died unnecessarily, as a direct result of inappropriately applying that theory).

    What would become of nuclear risk if governments changed their regulations to recognize the evidence of radiation’s beneficial health effects for exposures that are below the thresholds for detrimental effects?

    Here’s the background on the Türkiye Japan University (TJU). Our founder, Jeremiah Josey, met with the Japanese Ambassador to Türkiye in 2021 and confirmed Japanese support for technology development of Liquid Fission is easier should such work be included in the curriculum of the TJU. Early planning stages of the TJU can be seen here below. The vice president of TJU is a senior professor at the Tokyo University responsible for nuclear engineering.

    The “only” obstacle to adoption of Liquid Fission Thorium is the incumbent energy industries. It’s a significant obstacle, and it would be naive to think otherwise. Operating much like the tobacco industry has done in the past, lobbyists and funding at all levels occurs to stymie any potential competitors.

    It is predicted that the 7 Trillion USD per year fossil fuel energy market would shrink to a few hundred billion USD per year with a society powered by Liquid Fission Thorium. This is an obvious disincentive for incumbents to do anything but to obfuscate and delay. For the true scale of these numbers, that means that a world powered by Liquid Fission Thorium energy would require only one ship like the one below to carry ALL WORLD’s Energy for ONE year.

    100,00 DWT Bulk Carrier Cape Ace

    You can see that obfuscation at work here with both Wired and the Bulletin in 2019 on USA presidential candidate Andrew Yang:

    Fact-check: Five claims about thorium made by Andrew Yang – Bulletin


    Andrew Yang Wants a Thorium Reactor by 2027. Good Luck, Buddy – Wired

    The half truths and lies are difficult, if not impossible, for the layperson to identify. We contacted one of Andrew’s advisory team members and confirmed Andrew supports Liquid Fission Thorium, and was committing several billion USD to have USA’s energy footprint 100% on the technology by 2030. Technically very doable. Politically, not.

    It is important to recognise the ecological and economic footprint of energy from Thorium (a substance as common as lead) as being much smaller than even uranium. In the article link above (the Japanese translation one) there are three slides that demonstrate the significant benefits Thorium has over uranium.  These slides are repeated below.

    Thorium and Uranium Compared Slide 1 of 3
    Thorium and Uranium Compared Slide 1 of 3
    Thorium and Uranium Compared Slide 2 of 3
    Thorium and Uranium Compared Slide 2 of 3
    Thorium and Uranium Compared Slide 3 of 3
    Thorium and Uranium Compared Slide 3 of 3

    The IAEA report TE1450 from 2005 is an excellent read. It says Thorium is not an issue and is a good prospect for energy – back in 2005. Once the physics is proven it doesn’t need to be “upgraded” every 6 months like an iPhone.

    And yes, Thorium doesn’t explode. “Walk away safe” is a suitable term for Liquid Fission Technology.

    Here’s the former head of IAEA, Hans Blix, stating that “Thorium shouldn’t be treated like uranium”. 

    Thorium Nuclear Power and non Proliferation Hans Blix IAEA ThEC13

    See more Hans Blix on Liquid Fission Thorium Energy

    Attached below is a brief summary of “Why Thorium didn’t take off” by Bruce Hoglund, 5 November 2010. It’s an excellent starting point for data gathering and research – and not “Wikipedia”. Wikipedia was used as partial evidence why the United Kingdom should’t use Thorium for energy. Some 10 years ago in a UK government 1.5m GBP funded “study”, rubbished Thorium and directly contradicted the advice of the IAEA’s TE 1450 report.


    The information here is but the tip of the iceberg, however it gives an excellent starting point. There are of course, many, many others who can contribute considerably for a balanced and objective article or articles on Thorium for our energy future. And with today’s communications technology, such conversations are only but a few key strokes away.

    Burning stuff is old tech. Star Trek technology is where we have to be now. Fission does that, especially Liquid Fission Thorium Energy Technology.

    Uncle Martin would be proud. Nanu, nanu!


    Post created following a 2 hour interview between Associated Press representative for Japan, Ms. Yuri Kageyama and founder of The Thorium Network, Jeremiah Josey


    1. https://thethorium.network/join-us/
    2. https://www.youtube.com/watch?v=tyDbq5HRs0o
    3. https://thethorium.network/about-thorium/thorium-knowledge-base/
    4. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
    5. https://thethorium.network/%e3%83%91%e3%83%bc%e3%83%95%e3%82%a7%e3%82%af%e3%83%88%e3%83%86%e3%82%af%e3%83%8e%e3%83%ad%e3%82%b8%e3%83%bc-%e3%83%90%e3%82%a4%e3%83%aa%e3%83%b3%e3%82%ac%e3%83%ab%e8%a8%98%e4%ba%8b-%e6%97%a5%e6%9c%ac/
    6. https://en.wikipedia.org/wiki/Geraldine_Thomas
    7. https://en.wikipedia.org/wiki/George_Monbiot
    8. https://www.chernobyltissuebank.com/contact-us
    9. https://www.linkedin.com/in/danielroderick/
    10. https://www.linkedin.com/in/adi-paterson/
    11. https://www.gen-4.org/
    12. https://figes.com.tr/en/home
    13. https://www.linkedin.com/in/resat-uzmen-051a824/
    14. https://thethoriumnetwork.com/2022/05/17/interview-3-dr-resat-uzmen-nuclear-technology-director-of-figes-part-of-the-thorium-student-guild-interview-series-leading-to-nuclear/
    15. https://www.youtube.com/watch?v=NEDK_MAWQD0
    16. https://www.linkedin.com/in/l-berrin-erbay-61b04745/
    17. https://www.linkedin.com/in/phumzile-tshelane-3014945a/
    18. https://www.necsa.co.za/
    19. https://www.youtube.com/watch?v=6MsgDx8K-t4
    20. https://www.linkedin.com/in/rana-%C3%B6nem-57a14718b/
    21. https://thethoriumnetwork.com/join-us/student-guild/
    22. https://www.linkedin.com/in/ed-calabrese-697a1119/
    23. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
    24. https://hps.org/hpspublications/historylnt/episodeguide.html
    25. https://www.linkedin.com/in/jerry-cuttler-26106763/
    26. https://www.linkedin.com/posts/jerry-cuttler-26106763_what-would-become-of-nuclear-risk-if-governments-activity-6870517584475824128-qr3W
    27. https://www.youtube.com/watch?v=eJSeQIW-X44
    28. https://thebulletin.org/2019/12/fact-check-five-claims-about-thorium-made-by-andrew-yang/
    29. https://www.wired.com/story/andrew-yang-wants-a-thorium-reactor-by-2027-good-luck-buddy/
    30. https://www.youtube.com/watch?v=F4m10Y0rWBY
    31. https://www.youtube.com/results?search_query=hans+blix+thorium
    32. https://www.linkedin.com/in/bruce-hoglund-52194814/

    #Journalist #CribSheet #Thorium #Interviews #MoltenSaltFissionEnergy #Rosatom #Japan #Turkey #China #LNT #LiquidFission

  • Episode 12 – The Dismay of Radiophobia – Unintended Consequences – Chapter 5, Part 2

    Remembering Leslie Corrice’s words from Episode 11, Corrice’s dismay over the results of radiophobia are echoed by many professionals, one being Dr. Antone “Tony” Brooks, who grew up in “fallout-drenched” St. George, Utah, which led him to study radiation at Cornell University. For an excellent, short video of the conclusions he reached, please visit:

    Our Stories: “Fallout Man” with Tony Brooks – 2017 SILVER TELLY AWARD WINNER

    Dr. Gunnar Walinder, an eminent Swedish radiation scientist, bluntly told UNSCEAR, “…LNT is the greatest scientific scandal of the 20th Century.

    The Harmful and Fraudulent Basis for the LNT Assumption, August 2017, Charles Sanders

    Doctors petitioning NRC to revise radiation protection regulations June 29, 2015, Rod Adams

    LNT begat ALARA
    As Low As Reasonably Acheiveable”
    LNT- “Any radiation can kill you
    minimise the risk”.
    “Achievable” depends on technology, not health effects.
    Country Tritium Limits
    Canada 0.1 mSv/y World Health Org
    US 0.04 mSv/yr LWRs can meet

    Alarming ALARA

    The belief that tiny amounts of radiation can be lethal created ALARA – As Low As Reasonably Achievable – an anti-nuclear bias that has permeated our regulations for decades. However, “reasonably” is vague, and “achievable” depends on technology, not health effects.

    For example, the World Health Organisation has set a public exposure limit for tritium from nuclear power plants of 0.1 mSv per year. Canada’s reactors comply with this limit, but due to ALARA, the limit in the USA is 0.04 mSv per year. Why? Because it is achievable – not because it is necessary.

    Tritium (also known as hydrogen-3), is often used in watches and emergency exit signs. It is also present in our food and water. Furthermore, its tiny nucleus emits a particle so slow that it cannot even penetrate skin. In comparison, the Potassium-40 in our omnipresent banana emits beta particles that are 230 times as energetic, but no one worries about those deadly bananas.

    “Adults would have to drink ~3 gallons of Vermont-Yankee tritiated water every day to match the internal radiation they get from the Potassium-40 in their own bodies.”

    Mike Conley

    LNT and ALARA can easily lead to absurdities: For example, airline passengers are exposed to about 20 times more cosmic radiation than those at ground level, but despite the dire predictions of LNT, they experience no more cancer than those who don’t fly. Should jets be required to fly at low altitudes, where they produce more greenhouse gases, just to satisfy ALARA – and what about the flight attendants and pilots who constantly work in higher levels of cosmic radiation?

    As Radiation detection technology improves, ALARA just increases fear.

    137Caesium decay scheme showing half-lives, daughter nuclides, and types and proportion of radiation emitted.

    Caesium-137 from Fukushima is detectable, so Counter Punch complains of Blue Fun tuna containing 0.0000077 mSv per 7 oz serving [200 grams], writing “… no radiation exposure of any kind is safe”.

    Washington’s Hanford storage site has a budget of about USD 3 billion per year, much of which is used to try to reduce area radiation to the LNT-based standard of less than 0.15 mSv. (Normal Denver exposure is 40 times higher.)

    Construction of Nuclear Waste Storage Tanks at Hanford 1943

    It is wasteful to spend money “protecting” people from tiny amounts of radiation. Instead, let’s finance programs that help people stop smoking, which brings carcinogens like cyanide, formaldehyde, ammonia, carbon monoxide and nitrogen oxide into intimate contact with their lungs. (Smoking related diseases kill 5 million people per year).

    Radiation exposure in reactor buildings is so low that it isn’t an issue, but educating the public on basic environmental radiation is a very critical issue.

    For example, after Fukushima, lack of accurate radiation knowledge and the media’s eagerness to hype radiation issues caused a run on potassium iodide [KI] pills along our west coast, but no media explained that this was pointless. Pharmacies ran out, and some patients who needed KI couldn’t get it, while those who needlessly took it actually raised their chances of disease because too much KI can cause thyroid malfunction.

    Radiation is safe within limits
    LNT and ALARA are regulation policies, not scientific facts. Replace them
    An evidence-based radiation safety limit would be 100 mSv per year.
    Rational regulation is all that is needed to let nuclear power thrive and solve our global environmental and economic crises.

    Dr. Robert Hargraves, the author of THORIUM: Energy Cheaper than Coal, writes,

    “Radiation safety limits have been ratcheted down from 150 mSv/year in 1948 to 5 mSv/y in 1957 to 1 mSv/y in 1991 without supporting evidence by relying on the erroneous LNT model. EPA limits are set 100 times lower than levels that could cause harm. ALARA leads people, the press, and Big Green to falsely conclude that any radiation exposure may kill you.”

    Robert Hargraves – Aim High! @ TEAC3

    However, just 50 mSv/yr is the new limit proposed  by Dr. Carol Marcus and other experts in their 2015 petition that requests the NRC to increase the limits based on current knowledge.

    The petitioner recommends the following changes to 10 CFR part 20:

    (1) Worker doses should remain at present levels, with allowance of up to 100 mSv (10 rem) effective dose per year if the doses are chronic.

    (2) ALARA should be removed entirely from the regulations. The petitioner argues that “it makes no sense to decrease radiation doses that are not only harmless but may be hormetic.”

    (3) Public doses should be raised to worker doses. The petitioner notes that “these low doses may be hormetic. The petitioner goes on to ask, “why deprive the public of the benefits of low dose radiation?”

    (4) End differential doses to pregnant women, embryos and fetuses, and children under 18 years of age.

    Nuclear Regulatory Commission (NRC), United States of America

    For more on the consequences of accepting LNT, which led to ALARA, please see these links:

    Scientists for Accurate Radiation Information – S.A.R.I.

    XLNT Foundation website

    Absurd Radiation Limits Are a Trillion Dollar Waste

    James Conca, Forbes magazine – 2014

    James Conca, in Forbes: “There are some easy decisions to make that will save us a trillion dollars, and they could be made soon by the Environmental Protection Agency. The EPA could raise the absurdly low radiation levels considered to be a threat to the public. These limits were based upon biased and fraudulent “research” in the 1940’s through the 1960’s, when we were frightened of all things nuclear and knew almost nothing about our cells’ ability to repair damage from excess radiation.

    “These possible regulatory changes have been triggered by the threat of nuclear terrorism and by the unnecessary evacuation of tens of thousands of Japanese after Fukushima Daiichi, and hundreds of thousands of Russians after Chernobyl. There, the frightened authorities were following U. S. plans that were created because of the ALARA policy (As Low As Reasonably Achievable) that has always been misinterpreted to mean that all forms of radiation are dangerous, no matter at what level. It’s led to our present absurdly low threat level of 25 millirem.

    “Keep in mind that radiation workers can get 5,000 mrem/year and think nothing of it. We’ve never had problems with these levels. Emergency responders can get up to 25,000 mrem to save human lives and property. I would take 50,000 mrem just to save my cat.

    “This wouldn’t be bad if it didn’t have really serious social and economic side-effects, like pathological fear, significant deaths during any forced evacuation, not receiving medical care that you should have, shutting down nuclear power plants to fire up fossil fuel plants, and a trillion-dollar price tag trying to clean up minor radiation that even Nature doesn’t care about.”

    Approximately 100,000 people were evacuated from the Fukushima area after the meltdown, and by September, 2013, about 1,200 evacuees had died from suicide and the stress of the excessive evacuation.

    Dr. Brian Hanley: [Fukushima] “If no evacuation had occurred, and everyone had lived outdoors with no precautions, at most 15 cancer deaths might have happened, but probably none.

    “People have been going to radioactive spas in Ramsar, Iran for a long time without ill effect. In a 2-week visit, the dose would be a maximum of 10 mSv. That is 6 to 80 times more radioactive than the evacuation zone of Fukushima.”

    Ramsar

    “To enable nuclear power, the NRC must renounce the non-scientific basis for LNT and ALARA”

    Dr. Robert Hargraves

    Coming up next week, Episode 13 – What’s So Great about Nuclear Power

    Links and References

    1. Next Episode – Episode 13 – What’s So Great about Nuclear Power
    2. Previous Episode – Episode 11 – Looking for Radiation
    3. Launching the Unintended Consequences Series
    4. Dr. George Erickson’s Website, Tundracub.com
    5. The full pdf version of Unintended Consequences
    6. https://www.hiroshimasyndrome.com/
    7. https://worldcat.org/identities/lccn-n77019846/
    8. https://en.wikipedia.org/wiki/United_Nations_Scientific_Committee_on_the_Effects_of_Atomic_Radiation
    8. https://www.osti.gov/etdeweb/servlets/purl/20637408
    9. https://www.researchgate.net/publication/318986234_The_Harmful_and_Fraudulent_Basis_for_the_LNT_Assumption
    10. https://atomicinsights.com/doctors-petitioning-nrc-to-revise-radiation-protection-regulations/
    11. https://www.nrc.gov/reading-rm/basic-ref/glossary/alara.html
    12. https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/tritium-radiation-fs.html
    13. https://en.wikipedia.org/wiki/Tritium
    14. https://www.linkedin.com/in/mike-conley-5529b3/
    15. https://en.wikipedia.org/wiki/Caesium-137
    16. https://www.fisheries.noaa.gov/west-coast/science-data/fukushima-radiation-us-west-coast-tuna
    17. https://www.nuclear-power.com/nuclear-engineering/radiation-protection/equivalent-dose/sievert-unit-of-equivalent-dose/sievert-gray-becquerel-conversion-calculation/
    18. https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs//320-015_cleanup_e.pdf
    19. https://en.wikipedia.org/wiki/Hanford_Site
    20. https://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/index.htm
    21. https://www.cdc.gov/nceh/radiation/emergencies/ki.htm
    22. https://www.linkedin.com/in/roberthargraves/
    23. https://www.amazon.com/THORIUM-energy-cheaper-than-coal/dp/1478161299
    24. https://thoriumenergyalliance.com/resource/robert-hargraves-aim-high/
    25. https://www.youtube.com/watch?v=BOoBTufkEog
    26. https://www.linkedin.com/in/carol-s-marcus-ph-d-m-d-11111a62/
    27. https://www.nrc.gov/reading-rm/doc-collections/rulemaking-ruleforum/petitions-by-year/2015/index.html
    28. https://atomicinsights.com/doctors-petitioning-nrc-to-revise-radiation-protection-regulations/
    29. https://www.regulations.gov/document/NRC-2015-0057-0010
    30. http://radiationeffects.org/
    31. http://www.x-lnt.org/
    32. https://www.forbes.com/sites/jamesconca/2014/07/13/absurd-radiation-limits-are-a-trillion-dollar-waste/
    33. https://www.linkedin.com/in/jim-conca-2a51037/
    34. http://www.forbes.com/sites/jamesconca/2013/06/18/fukushima-2-25-the-humanitarian-crisis/
    35. https://www.linkedin.com/in/brian-hanley-983312/
    36. https://www.amazon.com/Radiation-Exposure-treatment-modern-handbook-ebook/dp/B00D7KLQYY
    37. http://large.stanford.edu/courses/2018/ph241/lance2/
    38. https://parsianramsar.pih.ir/
    39. https://en.wikipedia.org/wiki/Ramsar%2C_Iran

    #GeorgeErickson #UnintendedConsequences #Thorium #Fukushima #ALARA #Radiophobia #Ramsar

  • Episode 9 – Our Natural DNA Repair Capabilities – Unintended Consequences – Chapter 4 Part 1

    Near the end of the 20th century, researchers at the Massachusetts Institute of Technology (MIT) discovered that DNA strands can break and repair about 10,000 times per day per cell, (this is not a typo), and that a 100 mSv per year dose increases the number of breaks by only 12 per day.

    Massachusetts Institute of Technology, Engineering Faculty

    “… MIT discovered that DNA strands can break and repair about 10,000 times per day per cell, (this is not a typo), and that a 100 mSv per year dose increases the number of breaks by only 12 per day.

    In addition, the majority of DNA breaks are caused by ionised oxygen atoms from the normal metabolism that constantly occurs within our cells. And because DNA is a double helix, the duplicate information in the other strand lets enzymes easily repair single strand breaks. In fact, our cells have been repairing DNA breaks since forever, and they have become extremely good at it.

    DNA damage, due to environmental factors and normal metabolic processes inside the cell, occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell per day. A special enzyme, DNA ligase (shown here in color), encircles the double helix to repair a broken strand of DNA. DNA ligase is responsible for repairing the millions of DNA breaks generated during the normal course of a cell’s life.

    DNA Breaks During Replication

    Adaptive ResponseThe vaccination effect called Hormesis

    Dr. Alex Cannara explains it this way:

    Radiation from unstable isotopes is always decreasing. That’s what the ‘half-life’ for an isotope expresses. Going back in time is going back to much higher radiation environments – 8 times more for U-235 when photosynthesis began to make oxygen common in air, and oxidation made elements like Uranium soluble in water. Living things were, back then, even more intimately in contact with radioactive isotopes.

    “So how did life survive higher radiation, and how did it survive the increasing oxygen atmosphere, which corrodes life’s hydrocarbons into CO2 and water?

    “The answer is simple: Nature evolved repair mechanisms. Each cell repairs proteins or digests badly malformed cells. Each cell repairs genetic material before it’s copied for reproduction.

    “A DNA or protein molecule, or one of the many repair molecules in our cells, doesn’t know if a bond has been broken by an oxidizing radical, an alpha particle, or a microbial secretion. Our cellular-repair systems have evolved to fix defects regardless of cause. Thus, Nature has, for billions of years, been able to deal with chemical and radiation threats. Today, chemical threats have increased because of industry, but radiation threats have decreased.

    Therefore, we should not be surprised by the absence of radiation deaths at Fukushima and the small death rates in and around Chernobyl.”

    We have also learned that low dose irradiation of the torso is an effective treatment for malignant lymphomas. Fear of radon has been hyped by the EPA’s devotion to the LNT theory, and their efforts have greatly assisted those who sell and install radon-related equipment, whether needed or not. (Studies of every US county have revealed that those with low levels of radon actually had higher levels of lung cancer than counties with higher levels – where the incidence was lower!

    USA Radon Map
    USA Radon Map

    But compare the two maps. The counties with less radon have more lung cancer deaths. EPA’s LNT theory is clearly wrong.

    Here’s US lung cancer deaths, by county. Red have the highest death rates. Blue the lowest

    The EPA recommends remediation when radiation measures 4 picoCuries per litre of air, but an average adult is naturally radioactive at about 200,000 picoCuries. If the EPA knows this, and they should, why are they concerned about such low, natural radon levels?

    The south eastern states had the lowest radon levels, but high cancer rates.

    Climate Crowd Ignores a Scientific Fraud

    Radon, lung cancer and the LNT model

    This Radioactive Life, by Chris Patrick. Radiation is everywhere. The question is: How much?

    Coming up next week, Episode 10 – Hormesis: How Radiation is Good for You

    Links and References

    1. Next Episode – Episode 10 – Hormesis: How Radiation is Good for You
    2. Previous Episode – Episode 8 – More Beer, More Bananas
    3. Launching the Unintended Consequences Series
    4. Dr. George Erickson’s Website, Tundracub.com
    5. The full pdf version of Unintended Consequences
    6. https://en.wikipedia.org/wiki/DNA_ligase
    7. https://en.wikipedia.org/wiki/Hormesis
    8. https://wi.mit.edu/news/forks-colliding-how-dna-breaks-during-re-replication
    9. https://www.epa.gov/
    10. https://enews.lbl.gov/Science-Articles/Archive/radon-risk-website.html
    11. https://www.researchgate.net/figure/Cancer-mortality-rates-lung-trachea-bronchus-and-pleura-by-state-economic-area_fig1_242164660
    12. https://www.wsj.com/articles/climate-crowd-ignores-a-scientific-fraud-1460758426
    13. https://www.mn.uio.no/fysikk/tjenester/kunnskap/straling/radon-and-lung-cancer.pdf
    14. https://www.symmetrymagazine.org/article/this-radioactive-life

    #GeorgeErickson #UnintendedConsequences #MoltenSaltFissionEnergy #Thorium #MoltenSaltFissionTechnology #DNARepair #Hormesis

  • Episode 8 – More Beer, More Bananas – Unintended Consequences – Chapter 3 Part 2

    All radioactive elements “decay” by emitting [either] an alpha particle (a helium nucleus), a beta particle (an electron) or a gamma ray (pure energy), eventually becoming stable elements.  An element’s “half-life” is the time needed for ½ of the atoms in the “parent” element to decay into a “daughter” isotope. For the Potassium-40 in our bananas and bodies, it is 1.2 billion years. For the Americium-241 in our smoke detectors, it’s 432 years, and for Iodine-131, it’s 8 days.  

    Contrary to popular belief, elements with long half-lives, which decay slowly, present less risk than those with short half lives. 

    [The half life of Thorium is 14.05 billion years – about the age of our universe]

    Radioactivity is measured by the number of decays per second. One decay per second is one Becquerel (Bq). One banana produces about 15 Becquerels from its potassium-40, and smoke detectors emit 30,000 Becquerels, so when nuclear power critics fuss about 64,000 Becquerels entering the ocean at Fukushima, remember that 64,000 Becquerels is equal to 14 seconds of potassium radiation activity that occurs inside our bodies every day. (The radioactivity of normal seawater is 14,000 Becquerels per cubic meter). 

    However, focusing on Becquerels without considering the  energy absorbed by the body is pointless: You can throw a bullet or you can shoot one, but only one will cause harm. 

    Fortunately, radiation is easy to detect. A single  emission (1 Becquerel) will trigger a click in any decent detector, and an average adult emits 7,000 Becquerels, of which 4,400 Becquerels come from our Potassium-40, which “clicks” 4,400 times per second, for life.  

    “The word ‘radioactivity’ doesn’t account for the energy propelling the emissions, so quoting large Becquerel counts  says nothing about risk. However, big numbers can frighten uninformed people, and in building their case against nuclear power, many environmentalists have been doing just that.” Dr. Timothy Maloney

    Radioactivity in Food

    As noted earlier, radiation dose, which we measure  in Sieverts, is the biologically effective energy transferred by radiation to tissue. For example, one mammogram equals 1 to 2 milliSieverts (mSv), and one dental X-ray (0.001 mSv) is nowhere near enough to cause concern. 

    Let’s now consider the normal background radiation that accompanies us throughout our years. 

    Worldwide Natural Radiation Ranges from 1 to 250 mSv per year

    Natural “background” radiation dose rates vary widely,  averaging 1 mSv/year in Britain, 3 in the US, 7 in Finland, 10  in Spain, 12 in Denver and up to 300 mSv per year in Kerala, India and even  higher on a number of “radioactive” beaches around the world  that people flock to for health reasons. Given these statistics, one might expect cancer rates in Finland and Spain to be higher than in Britain, but Britain has higher rates of cancer than both Spain and Finland despite LNT dogma [See Episode 6 where we expose the Linear No Threshold lie].

     Dose Rates and Health 

    A massive, single, whole-body radiation dose, as at Hiroshima and Nagasaki [1945 United States of America bombings of Japan], severely damages blood cell production and the digestive and nervous systems. 

    A single 5,000 mSv dose is usually fatal, but if it is spread over a lifetime it is harmless because at low dose  rates, damaged cells are repaired or replaced. (Consume a  cup of salt in one sitting, and you will probably die, but do it  over six months or more, and it won’t be a problem.) 

    Radiation in Perspective (1 mrem = 0.01 mSV)

    How Much Radiation Is Too Much? Regulators have set exposure limits far too low, inspiring irrational fear of a cheap, clean energy source. By Robert Hargraves Sept. 21, 2021

    Why Radiation is Safe below 100 mSv per year

    In 1945, the U. S. exploded two atomic bombs over Japan, killing 200,000 people. Since then, 93,000 survivors have been studied for health effects. In 55 years, 10,423 of  those survivors died from cancer, which is just 573 (5%) more than the number of deaths expected by comparison with  unexposed residents.


    05 Oct 1945, Nagasaki, Japan – A Japanese citizen walks through the damaged lands of Nagasaki, two months after the atomic bomb was dropped over the city. – Image by © Bettmann/CORBIS

    According to Dr. Shizuyo Sutou, expert in mutations, Shujitsu University, Japan, ”Ionizing radiation is not always hazardous, and low dose radiation sometimes stimulates our beneficial defence mechanisms.”  Hiroshima/Nagasaki survivor data since 1945 shows that, on average, lifespan was extended and cancer mortality was  reduced.

    Low Dose Radiation from A-bombs elongated Life span and reduced cancer mortality relative to un-irradiated individuals – Dr. Shizuyo Sutou

    In addition, no excess cancer deaths have been observed in those who received radiation doses below 100 mSv. In fact, Japanese A-bomb survivors who received less than 100 mSv, have been outliving their unexposed peers. 

    Subsequent studies by the United Nations Scientific  Committee on the Effects of Atomic Radiation (UNSCEAR) have proved that below 100mSv, which is well above normal background radiation levels, it is not possible to find any  cancer excesses. 

    …it is not possible to find any cancer excesses.

    UNSCEAR

    Linear No-threshold (LNT) vs. Hormesis: Paradigms, Assumptions, and Mathematical Conventions that Bias the Conclusions in Favor of LNT and Against hormesis

    [You can see the rubbish perpetuated by the ICRP dose limits here and here. These fictitious, made-up numbers cause the deaths of millions of people each year and hobble the advancement of our civilisation – all for maintaining the oil industry’s profits.]

    – TRUTH –

    We are surrounded by naturally occurring radiation. Less than 1/1000th of the average American’s dose comes from nuclear power.

    This yearly dose is 200 times less than a cross country flight…

    …is 13 times less than a glass of beer…

    … and about the same as eating one banana(21).

    Are we really doing our best when it comes to managing radiation safety?

    Coming up next week, Episode 9 – Our Natural DNA Repair Capabilities

    Links and References

    1. Next Episode – Episode 9 – Our Natural DNA Repair Capabilities 
    2. Previous Episode – Episode 7 – Beer and Bananas
    3. Launching the Unintended Consequences Series
    4. Dr. George Erickson’s Website, Tundracub.com
    5. The full pdf version of Unintended Consequences
    6. https://en.wikipedia.org/wiki/Thorium
    7. https://en.wikipedia.org/wiki/Becquerel
    8. https://www.timothymaloney.net/Critique_of_100_WWS_Plan.html
    9. https://www.roadmaptonowhere.com/about-us/
    10. https://www.radioactivity.eu.com/site/pages/Radioactivity_food.htm
    11. Ramsar, Iran natural radiation levels
    12. https://en.wikipedia.org/wiki/Atomic_bombings_of_Hiroshima_and_Nagasaki
    13. https://stmuscholars.org/the-weapon-that-changed-war-u-s-bombings-of-hiroshima-and-nagasaki/
    14. https://www.wsj.com/articles/nuclear-regulatory-council-nrc-energy-regulator-radiation-climate-change-11632257020
    15. https://www.researchgate.net/profile/Shizuyo-Sutou
    16. https://radiationeffects.org/low-dose-radiation-from-a-bombs-elongated-life-span-and-reduced-cancer-mortality-relative-to-un-irradiated-individuals-sutou/
    17. https://www.unscear.org/
    18. https://journals.lww.com/health-physics/Abstract/2019/06000/Linear_No_threshold__LNT__vs__Hormesis__Paradigms,.7.aspx
    19. https://www.icrp.org/
    20. http://icrpaedia.org/Dose_limits
    21. https://www.nrc.gov/docs/ML0816/ML081690717.pdf
    22. American Nuclear Society
    23. Handbook of Radiation Measurement and Protection, edited by A. Brodsky

    #GeorgeErickson #UnintendedConsequences #MoltenSaltFissionEnergy #Thorium #MoltenSaltFissionTechnology #LinearNoThreshold

  • Episode 6 – The Big Deceit – Unintended Consequences – Chapter 2

    “No science is immune to the infection of politics and the corruption of power.”

    Jacob Bronowski

    In 1928, Hermann Muller, the originator of the Linear No Threshold (LNT) theory, exposed fruit flies to 2,750 milliSieverts (mSv) of radiation in just 3 1/2 minutes, which caused gene deletions and deformities. Radiation dose, which we measure in Sieverts, is the biologically effective energy transferred to body tissue by ionizing radiation.)

    Although the dose that Muller used was equivalent to receiving 1,000 mammograms in just 3.5 minutes, he called it a low dose, even though it was extremely high. (Even Japanese atomic bomb survivors didn’t receive such a large dose.)

    Muller then extrapolated his results down to ZERO mSv without testing low levels of radiation and continued to promote his theory into the fifties, perhaps because he wanted to heighten fear of fallout from testing nuclear bombs. Muller argued that there is no safe level for radiation and claimed that even tiny amounts of radiation are cumulative. (According to LNT dogma, a butcher who cuts his finger fairly often will be dead in ten years from blood loss – despite his continuing to work.)

    Ernst Caspari

    Muller’s results were disputed by several of his colleagues, one being a researcher named Ernst Caspari, whose work Muller praised. (We learned this after Muller’s correspondence became public late in the 20th century). Muller wrongly asserted that, even at low dose rates over long times, the risk is proportionate to the dose.

    In the fifties, no one knew that our cells routinely repair DNA damage, whether caused by radiation or oxidation, a normal body process, so we accepted his theory. (DNA is “short” for deoxyribonucleic acid, a complex, spiral, chain-like molecule that contains our genetic codes.)

    By Zephyris – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15027555

    Muller’s theory is analogous to the earth-centered solar system that everyone “knew” was true for thousands of years, and it’s regrettable that so many still believe it. From its beginning, the LNT theory was based on a fraud, and it has been perpetuated by anti-nuclear fearmongers.

    Excerpt from Muller’s Nobel acceptance speech.

    So why wasn’t Muller truthful? During a radio interview on IEEE SPECTRUM’s “Techwise Conversations,” Dr. Calabrese explained it this way:

    “Ernst Caspari and Kurt Stern were colleagues, and Muller was a consultant to Stern. Muller provided the fruit fly strain that Stern and his coworkers used. Stern and Muller thought there was a linear dose-response relationship even at low doses….

    “In the chronic study, which was done far better in terms of research methodology than an earlier study, they found that the linear relationship was not supported, and what they observed would be supportive of a [safe] threshold dose- response relationship. This created a conflict—not for the actual researchers like Casparibut for his boss, Kurt Stern, who tried to convince Caspari that his study didn’t support the linear model because his control group values were artificially high.

    Calabrese Explaining the Fraud of Linear No Threshold Theory

    As recently as September 1 2020, Edward Parsese shows National Academy of Science (NAS) panel members ignored human data that challenged their already-set conclusions. This costs our planet, and our future generations Trillions of dollars and literally the future of our planet. It needs to stop.

    “So Caspari… got lots of unpublished findings from Muller and put together a case that his boss was wrong. Ultimately, he got Stern to accept his findings that supported the threshold dose response. [Which actually meant that there was a threshold below which low levels of radiation were safe.]

    “They sent Caspari’s paper to Muller on Nov. 6, 1946. On Nov.12 he [Muller] wrote to Stern indicating that he went over the paper, and he saw that the results were contrary to what he thought would have happened, that he couldn’t challenge the paper because Caspari was an excellent researcher, that they needed to replicate this, and that this was a significant challenge to a linear dose response because this study was the best study to date, and it was looking at the lowest dose rate that had ever been used in such a study.

    “A month later, Muller went to Stockholm to accept his Nobel Prize, and in his speech, he tells the scientists, dignitaries, press… that one can no longer accept any consideration of a threshold model, that all you can really accept is the linear dose- response model. …Yet Muller had actually seen the results of a study that he was a consultant on, that was the best in showing no support for the linear model – but support for a [safe] threshold model.

    “He had the audacity to actually go in front of all these dignitaries and mislead the audience. He could have said, ‘This is a critical area, and we need to do more research to try to figure this out.’ It would have been intellectually honest and the appropriate thing to say, but that’s not what he says. He tries to actually mislead the audience by saying there’s not even a remote possibility that this alternative exists, and yet he has seen it.”

    Note: as of 12 Feb 2022 this interview is no longer available on IEEE Spectrum (???)

    Radiation’s Big Lie
    Did a Nobel laureate knowingly lie about the dangers of radiation in 1946?
    BY STEVEN CHERRY // FRI, OCTOBER 07, 2011

    Because Muller had also strongly (and appropriately) opposed the atmospheric testing of nuclear weapons, and because he wanted to persuade Congress and the American public to oppose the expansion of nuclear energy, he seems to have concluded that the end would justify his lie, even if it compromised his integrity.

    National Academy Of Sciences ‘Misled The World’ When Adopting Radiation Exposure Guidelines

    No safe level of radiation exposure? Researcher points to suppression of evidence on radiation effects by Nobel Laureate

    US Risk Assessment Policy: A History of Deception” by Edward Calabrese (Univ. of Chicago Law Review Online, Vol. 79 [2017]

    In November, 2014, Dr. John Boice, president of the National Council on Radiation Protection, stated, ”…the reason they were concerned about the risk of radiation doses all the way to zero was because they used a theory [LNT] for genetic effects that assumed that even a single hit on a single cell could cause a mutation, and they did not believe there was any such thing as a beneficial mutation.”

    When the LNT model was adopted by the National Academy of Sciences in 1956, its summary stated: “Even small amounts of radiation have the power to injure.” The report, which was published in the New York Times, inflated the fear of radiation, even at extremely low levels.

    NAS Adopts Fraudulent LNT Theory

    However, newly discovered letters between some of the members of the National Academy of Science committee indicate that the reason for adopting the LNT model was not that small amounts of radiation might be dangerous, but that Muller’s deception (and possibly self-interest), had trumped science – with one individual writing, “I have a hard time keeping a straight face when there is talk about genetic deaths and the dangers of irradiation. Let us be honest—we are both interested in genetics research, and for the sake of it, we are willing to stretch a point when necessary… the business of genetic effects of atomic energy has produced a public scare and a consequent interest in and recognition of the importance of genetics. This is good, since it may lead to the government giving more money for genetic research.”

    In 2015, while reading Dr. Siddhartha Mukherjee’s The Emperor of All Maladies, a Pulitzer Prize winner about our long battle with cancer, I came upon the following passage:

    “In 1928, Dr. Hermann Muller, one of Thomas Morgan’s students, discovered that X-rays could increase the rate of mutations in fruit flies…” [Morgan, by studying an enormous number of fruit flies, had discovered that the altered genes and mutations could be carried from one generation to the next.]

    “Had Morgan and Muller cooperated, they might have uncovered the link between mutations and malignancy. But they became bitter rivals Morgan refused to give Muller recognition for his theory of mutagenesis…

    “Muller was sensitive and paranoid; he felt that Morgan had stolen his ideas and taken too much credit. In 1933, having moved his lab to Texas, Muller walked into a nearby woods and swallowed a roll of sleeping pills in an attempt at suicide. He survived, but was haunted by anxiety and depression.”

    Knowing this, I wonder if Muller’s need for recognition and his resentment of Morgan, who received the Nobel Prize for his work on fruit fly genetics in 1933, might have caused him to hide the work of Ernst Caspari and others because it would have jeopardised his “fifteen minutes of fame.”

    Muller received his Nobel Prize in 1946, but his deception has promoted the fear of all forms of radiation, however feeble. In addition, it has caused the deaths of millions and accelerated Climate Change by stunting the growth of CO2-free nuclear power, which has required us to burn huge amounts of polluting,health-damaging coal, oil and natural gas.

    (Muller’s claim that tiny amounts of radiation are cumulative is like arguing that 50 jumps off of a one-foot step will be as damaging as one jump from a 50-foot cliff.)

    For the great enemy of the truth is often not the lie – deliberate, contrived, and dishonest – but the myth – persistent, persuasive, and unrealistic. Too often we hold fast to the clichés of our forebears. We subject all facts to a prefabricated set of interpretations. We enjoy the comfort of opinion without the discomfort of thought.

    US President John F Kennedy 1960-1963

    “To overturn orthodoxy is no easier in science than in philosophy or religion.” Ruth Hubbard

    Due largely to LNT, only a few new nuclear power plants have been designed and built since the NRC was created. There are at least 1,000 papers that prove LNT wrong—all of them ignored by NRC and EPA. On average the NRC creates one new regulation per day, and it can cost a billion dollars just to get approval for a test reactor of a new design.

    Coming up next week, Episode 7 – Beer and Bananas.

    Links and References

    1. Next Episode – Episode 7 – Beer and Bananas 
    2. Previous Episode – Episode 5 – The Big Melt and the Acid Bath
    3. Launching the Unintended Consequences Series
    4. Dr. George Erickson on LinkedIn
    5. Dr. George Erickson’s Website, Tundracub.com
    6. The full pdf version of Unintended Consequences
    7. https://en.wikipedia.org/wiki/Jacob_Bronowski
    8. https://en.wikipedia.org/wiki/The_Ascent_of_Man
    9. https://en.wikipedia.org/wiki/Linear_no-threshold_model
    10. https://en.wikipedia.org/wiki/Sievert
    11. https://en.wikipedia.org/wiki/Ernst_Caspari
    12. https://en.wikipedia.org/wiki/DNA
    13. https://en.wikipedia.org/wiki/Edward_Calabrese
    14. https://www.umass.edu/sphhs/person/edward-j-calabrese
    15. https://www.linkedin.com/in/ed-calabrese-697a1119/
    16. https://www.youtube.com/watch?v=-rKQ-OPmjE4
    17. https://www.umass.edu/news/article/new-calabrese-paper-continues-criticism
    18. https://spectrum.ieee.org/podcast/at-work/education/radiations-big-lie/
    19. National Academy Of Sciences ‘Misled The World’
    20. https://www.sciencedaily.com/releases/2011/09/110920163320.htm
    21. US Risk Assessment Policy: A History of Deception” by Edward Calabrese
    22. https://ncrponline.org/2018-council-members/
    23. https://www.linkedin.com/in/john-boice-29b91a14/
    24. https://en.wikipedia.org/wiki/Siddhartha_Mukherjee
    25. https://www.linkedin.com/in/siddhartha-mukherjee-19b6b8126/
    26. https://en.wikipedia.org/wiki/Ruth_Hubbard
    27. https://journals.sagepub.com/doi/pdf/10.1177/1559325818779651
    28. https://www.heartland.org/publications-resources/publications/low-level-radiation-benefits-human-health
    29. https://21sci-tech.com/articles/nuclear.html
    30. https://radiationeffects.org/
    31. https://www.x-lnt.org/
    32. Molly Cheshire Interviews Scientist on Radon and LOW Cancer Rates!
    33. https://atomicinsights.com/atomic-show-224-dr-john-boice-ncrp/
    34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663584/
    35. https://pubmed.ncbi.nlm.nih.gov/27493264/
    36. https://pubmed.ncbi.nlm.nih.gov/29475999/
    37. https://bimedis.com/latest-news/browse/217/reexamining-the-linear-no-threshold-model

    #ClimateChange #UnintendedConsequences #GeorgeErickson #FissionEnergy #NuclearEnergy #FossilFuels #LinearNoThreshold