Category: ORNL

  • An Engineers’​ Point of View on Thorium: Unwrapping the Conspiracy

    Preface

    I have written this article exclusively for The Thorium Network(1) on the basis that I remain anonymous – my livelihood depends on it. I completed my nuclear engineering degree in the late 2000’s and shortly thereafter found a position in a semi-government owned nuclear power station – with several PWRs to look after. One year after graduating and commencing my professional career, I discovered the work of Dr. Alvin Weinberg(2) and began conducting my own research.

    My anonymity is predicated on my experience during this time of intense study and learning. As a young female graduate when I shared my enthusiasm for this technology I faced harassment and derision from my male colleagues, from high level government officials and also, unfortunately, from my university professors, whom I initially turned to for help. It wasn’t long before I started to keep my research and my thoughts to myself.

    I have found Women In Nuclear(3) to be most supportive and conducive to fostering and maintaining my interest in this technology, though even there it remains a “secret subject”.

    So when I discovered The Thorium Network(1), I decided it was a good platform to tell my story. I look forward to the time when there is an industry strong enough to support engineers like me full time, so we can leave our positions in the old technology and embrace the new.

    My Studies – No Thorium?

    As a nuclear engineer, I was trained to understand the intricacies of nuclear reactions and the ways in which nuclear power could be harnessed for the betterment of humanity.

    During my time in university, I learned about various types of reactors, including pressurized water reactors, boiling water reactors, and fast breeder reactors.

    Phew!

    However, one type of technology that was never mentioned in my coursework was the Thorium Molten Salt Burner (TMSB). Or “Thorium Burner” as my friends like to say. “TBs” for short. I like it too. Throughout my article I also refrain from using traditional words and descriptions. The nuclear industry must change and we can start by using new words.

    Shortly after graduating I stumbled upon information about TBs from the work of the famous chemist and nuclear physicist, Dr. Alvin Weinberg(2). TBs have enormous potential and are the future of nuclear energy. I can say that without a doubt. I was immediately struck by the impressive advantages that TBs offer compared to the technologies that I had learned about in school. I found myself wondering why this technology had not been discussed in any of my classes and why it seemed to be so overlooked in the mainstream discourse surrounding nuclear energy and in particular in today’s heated debates on climate change.

    What are TBs – Thorium Burners

    To understand the reasons behind the lack of knowledge and recognition of TBs, it is first important to understand what exactly TBs are and how they differ from other types of fission technologies. TBs are a type of fission device that use Thorium as a fuel source, instead of the more commonly used uranium or plutonium. The fuel is dissolved in a liquid salt mixture*, which acts as the fuel, the coolant and the heat transfer medium for taking away the heat energy to do useful work, like spin a turbine to make electricity, or keep an aluminum smelter bath hot**. This design allows for a number of benefits that old nuclear technology does not offer.

    *A little tip: the salt is not corrosive. Remember, our blood is salty but we don’t rust away do we.

    ** I mention aluminum smelting because it too uses a high fluorine based salt – similar to what TBs use. And aluminum is the most commonly used metal on our planet. You can see more on this process here: Aluminum Smelting(4)

    Advantages of TBs

    One of the most significant advantages of TBs is their inherent safety. They are “walk away safe”. Because the liquid fuel is continuously circulating, and already in a molten state, there is no possibility of a meltdown. If the core region tries to overheat the liquid fuel will simply expand and this automatically shuts down the heating process. This is known as Doppler Broadening(5).

    Additionally, the liquid fuel is not pressurized, removing any explosion risk. It just goes “plop”.

    These physical features make TBs much safer than traditional machines, which require complex safety systems to prevent accidents. Don’t misunderstand me, these safety systems are very good (there has never been a major incident in the nuclear industry from the failure of a safety system), but the more links you have in a chain the more chances you have of a failure. TBs go the other way, reducing links and making them safer by the laws of physics, not by the laws of man.

    Another advantage of TBs is their fuel utilization. Traditional machines typically only use about 3% of their fuel before it must be replaced. In contrast, TBs are able to use 99.9% of their fuel, resulting in effectively no waste and a much longer fuel cycle (30 years in some designs). This not only makes TBs more environmentally friendly – how much less digging is needed to make fuel – but it also makes them more cost-effective.

    TBs are also more efficient than traditional machines. They are capable of operating at higher temperatures (above 650 degrees C), which results in increased thermal efficiency and a higher output of electricity per unit of fuel. This increased efficiency means that TBs require even less fuel to produce the same amount of energy, making them even more a sustainable option for meeting our energy needs.

    The Conspiracy

    Ever wonder why all the recent “conspiracy theories” have proven to be true? It looks like Thorium is another one. It’s just been going on for a long, long time.

    So why, then, was I never taught about TBs in university? The answer to this question is complex and multi-faceted, but can all be traced back to one motive: Profit. The main factor that has contributed to the lack of recognition and support for TBs is the influence of the oil and fossil fuel industries. These industries have a vested interest in maintaining the status quo to preserve their profits. They have used their massive wealth and power to lobby against the development of competitive energy sources like TBs. Fossil fuel companies have poured billions of money into political campaigns and swayed public opinion through their control of the media. This has made it difficult for TBs to receive the funding and recognition they need to advance, as the fossil fuel industries work to maintain their dominance in the energy sector.

    First Hand Knowledge – Visiting Oak Ridge

    During my research I took a trip to Oak Ridge National Laboratory in Tennessee, where the first experimental Thorium Burner, the MSRE – the Molten Salt Reactor Experiment – was built and operated in the 1960s. During my visit, I had the chance to speak with some of the researchers and engineers who had worked on the MSRE – yes some are still around. It was amazing to speak with them. I learnt first hand about the history of TBs and their huge potential that they have. I also learnt how simple and safe they are. They called the experiment “the most predictable and the most boring”. It did everything they calculated it would do. That’s a good thing!

    The stories I heard from the researchers and engineers who worked on the MSRE were inspiring but also concerning. They spoke of the tremendous potential they saw in TBs and the promise that this technology holds for the future of meeting world energy demands. They also spoke of the political and funding challenges that they experienced first hand. The obstacles that prevented TBs from receiving the recognition and support they needed to advance. They were told directly to destroy all evidence of their work on the technology when Dr. Alvin Weinberg was fired as their director in 1972 and the molten salt program shut down. This was done under Nixon’s watch. You can even hear Nixon do this here on this YouTube(6) clip. Keep it “close to the chest” he says. I am surprised that this video is still up on YouTube considering the censorship we’ve been experiencing in this country in the past few years.

    1971 Nixon Phone Call – Nixon Speech on Jobs in California – TR2016a

    The experiences at Oak Ridge confirmed to me that TBs are a promising and innovative technology that have been marginalized and overlooked clearly on purpose. On purpose to protect profits of other industries. It was inspiring to hear about the dedication and passion of the researchers and engineers who worked on the MSRE, and it reinforced my belief in the potential of TBs to play a major role in meeting our energy needs in a sustainable and safe manner. I am hopeful that, with increased investment and support, TBs will one day receive the recognition and support they deserve, and that they will play a significant role in shaping the future of energy.

    Moving On – What is Needed

    Despite the challenges, I believe that TBs have a promising future in the world of energy from the Atom. They offer a number of unique benefits that can clearly address the any minor concerns surrounding traditional nuclear energy machines, such as safety and waste management. They are also the answer for world energy.

    Countering the Vested Interests – Education and Awareness

    In order for TBs to become a more widely recognized and accepted technology, more funding – both public and private – is needed to revamp the research and development conducted in the 1950’s and 1960’s. Additionally, education and awareness about the potential of TBs must be raised, in order to dispel any misconceptions and address the stigma that still surrounds nuclear energy, and to counter the efforts that are still going on even today, to stymie TBs from becoming commercial.

    In order to ensure that TBs receive the support they need to succeed, it is necessary to counter the influence of the oil and fossil fuel industries and to create a level playing field for competitive energy sources. This will require a concerted effort from the public, policymakers, and the private sector to invest in and promote the development of TBs.

    Retiring Aging Assets and Funding New Ones

    There’s also another factor that also needs to be addressed the same way as the oil and fossil fuel industries and that is the existing industry itself. The nuclear industry has long been dominated by a few large companies, and these companies have a vested interest in maintaining the status quo and investing in traditional reactor technology. This includes funding universities to train people such as myself. This has made it difficult for TBs to gain traction and receive the funding they need to advance.

    An Industry Spawned: Non Linear Threshold (LNT) and As Low As Reasonably Achievable (ALARA)

    A third reason is the prodigious amount of money to be made in maintaining the apparent safety of the existing nuclear industry. This was something else I was not taught in school – about how fraudulent science using fruit flies was railroaded by the oil industry (specifically the Rockefellers) to create a cost increasing environment for the nuclear industry to prevent smaller and smaller amounts of radiation exposure. Professor Edward Calabrese(7) taught me the most about this. You must watch his interviews.

    What has grown from this is a radiation safety industry – and hence a profit base – with a life of it’s own. I see it every single working day. It holds tightly to the vein that radiation must at all costs (and all profits) be kept out of the public domain. Again a proven flawed premise but thoroughly supported by the need, and greed, of the incumbent industry to maintain the status quo.

    Summing Up – Our Future

    In conclusion, as someone who studied nuclear engineering but never learned about Thorium Molten Salt Technology, I am disappointed that I was not given the opportunity to learn about this promising and innovative technology during my time in university. However, I am also grateful to have discovered it now, particularly with my professional experience in the sector. I am eager to see how TBs will continue to evolve and change the face of energy worldwide. With the right support and investment, I believe that TBs have the potential to play the main role in meeting our energy needs in a sustainable and safe manner, and I hope that they will receive the recognition they deserve in the years to come.

    Miss A., Space Ship Mother Earth, 2023.

    References and Links

    1. https://TheThoriumNetwork.com/
    2. https://en.wikipedia.org/wiki/Alvin_M._Weinberg
    3. https://win-global.org/
    4. https://aluminium.org.au/how-aluminium-is-made/aluminium-smelting-chart/
    5. https://www.nuclear-power.com/glossary/doppler-broadening/
    6. Nixon Ends Thorium https://www.youtube.com/watch?v=Mj5gFB5kTo4
    7. https://hps.org/hpspublications/historylnt/episodeguide.html

    Tags

    #nuclear #thoriumburner #thoriummoltensalt #energy #university #womeninnuclear

  • Safeguards for the Lithium Fluoride Thorium Reactor: A Preliminary Nuclear Material Control and Accounting Assessment – by Oak Ridge National Laboratories – Publication ORNL/TM/2022/2394

    The most modern reproduction and replication of the work of the 1960’s undertaken by Flibe Energy Inc. is reviewed by Oak Ridge National Laboratories in a private public partnership. (ORNL is managed by UT-Battelle).

    Today we spotlight the most recent production from Oak Ridge National Laboratories in Tennessee, USA, (ORNL). The report is all about Molten Salt Fission Technology Powered by Thorium. This concise 54 page report is akin to the ORNL report produced 44 years ago in August 1978, entitled Molten-Salt Reactors Efficient Nuclear Fuel Utilization without Plutonium Separation and further extends the ORNL work reported in The Development Status of Molten Salt Breeder Reactors from August 1972. (It appears that August is the month of important reports by ORNL). This later behemoth 434 page report is the mother lode of information for all work done at ONRL regarding Molten Salt Fission Energy Technology powered by Thorium. Anyone looking at investing into this technology must make it a priority read – all of the work has been done before. The report can be found further below in this post.

    This most recent report on this technology has been produced by the authors, Dr. Richard L. Reed, Dr. Louise G. Evans and Donald N. Kovacic, B.Sc. All are senior scientists involved with Molten Salt Technology at ORNL.

    Before we discuss the report, first we’ll discuss why it’s important to define new terminology for nuclear energy sector.

    For generations massive amounts of negative press and target funding has branded the word nuclear as simply bad. And let’s face it. Nuclear Physics is complicated, and so conversations get complicated pretty quickly too. Let’s just look at the elements we can play with.

    Periodic Table

    Out of 118 elements in the Periodic Table, 80 are stable having 339 isotopes, leaving 38 elements – those heavier than lead – as unstable. These 38 elements have over 3,000 possible isotope existent states. Hence thousands of unstable isotopes, lead to 10’s of thousands of combinations of decay, neutron absorption, and possible fission events, from neutrons both fast – high energy particles, and thermal – low energy particles, and then hundreds of other non responsive isotopes of non responsive elements that exhibit different behaviours over time and distance. For example water is better for absorbing fast neutrons and lead is better for thermal neutrons. Boron-10 absorbs neutrons, whilst boron-11 does not. Neutrons bounce off, are reflected by graphite, beryllium, steel, tungsten carbide, and gold (There are more too). OK, so the picture is clear – fission energy gets complicated very quickly.

    DOE Explains…Isotopes

    Shielding Neutrons with Different Materials

    Remember too, that this all started in a race to build nuclear weapons – not to make energy. Weapons should all be dismantled and destroyed. USA and UK should follow in the footsteps of South Africa who dismantled their last bomb in 1989. Today the USA and UK combined have enough firepower to destroy humanity entirely 150 times over. We are thankful that Molten Salt technology was pursued with such vigor precisely because it cannot make weapons. It only makes energy.

    The Thorium fuel cycle is “intrinsically proliferation-resistant”

    The International Atomic Energy Agency, 2005

    Thorium fuel cycle — Potential benefits and challenges IAEA, May 2005


    Hans Blix, former head of IAEA explaining why Thorium, and Molten Salt Fission Energy Technology doesn’t even need to be addressed by the IAEA.

    Former head of IAEA, Hans Blix, discussing why Thorium is superior

    Why South Africa Dismantled Its Nuclear Weapons

    by Evelyn Andrespok, March 2010
    South African Nuclear Bomb Casings
    Bomb Delivery – English Electric Canberra South African Air Force in Angola

    We are also thankful that nuclear weapons are now illegal (why did THAT take so long?)

    Treaty on the Prohibition of Nuclear Weapons


    So back to the nomenclature.

    We call it Fission, not nuclear.

    We call them Machines, not reactors. (By the way, there’s no reactions going on, and indeed in the core region fuel is “burned” according to the physics text books. In Fission, atoms are split, so “splitter” is the correct term!)

    We say Molten Salt Fission Energy TechnologyMSFT. Not anything else. Calling it LFTR ties the technology to a specific fluid-fuel type. Even the company FLIBE are considering changing the Beryllium metal to Sodium metal (the BE means Beryllium in their company’s name).

    And Fission – Nuclear Energy – is effectively Carbon Free. Even Bill Gates knows this.

    Bill Gates getting into Molten Salt

    Bill Gates going Nuclear

    The latest ORNL report is excellent at defining the challenges already identified 50 years ago. The net result is that ORNL have made recommendations to modify the Flibe design thus eliminating any chance of weapons production from Molten Salt Fission Energy Technology powered by Thorium.

    Some of these recommendations are:

    • Use multiple, smaller decay vessels for salt distribution for emergency shutdown events.
    • Install stringent material monitoring systems with tamper evident features for fuel processing.
    • Use batch fuel processing and not continuous for better inventory controls.
    • Recombine fuel elements to increase gamma activity of the fuel processing cycle.
    • Allow U232 production to increase hence increasing the self protection mechanism.
    • Eliminate the decay fluorinator entirely by allowing protactinium to decay in the fuel salt.
    • Remove physical access to the UF6 stream by have vessels immediately adjacent to each other.

    These, and other recommendations, effectively define Molten Salt Fission Technology powered by Thorium as proliferation proof.

    You can see the full report here:



    The latest ORNL report must be read in conjunction with a 1978 report, also by ORNL staff – and also released in the month of August – where proliferation concerns of the earlier designs where addressed. In that report the authors J. R. Engel, W. R. Grimes, W. A. Rhoades and J. F. Dearing allowed the build up of U232 to create self protection whilst still maintaining machine performance – “denatured”, as they called it.

    Here is that report, Technical Memorandum TM 6413, from August 1978:

    ORNL TM 6413 August 1978 Molten-Salt Reactors for Efficient Nuclear Fuel Utilization Without Plutonium Separation


    Here’s one of the authors of that report – John Richard “Dick” Engel – shortly before his passing in 2017.

    Dick Engel & Syd Ball – ORNL Molten Salt Reactor Engineer Interview shot for THORIUM REMIX

    The following documents should also be read together with ORNL report 2022/2394 to ensure full understanding:

    ORNL TM 3708 1964 Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964

    This report summarized the work leading up to the Molten Salt Reactor Experiment, that ran from 1965 to 1969 – the “most boring experiment ever. It did everything we expected it to do.”, said by Dr. Sydney Ball.

    The Molten-Salt Reactor Experiment

    ORNL TM 4658 1972 Chemical Aspects of MSRE Operations

    This report debunks corrosion myths surrounding Molten Salt Technology.

    ORNL TM 4812 August 1972 Development Status of Molten-Salt Breeder Reactors

    This is the report that ended in the program being shut down. The USD 1 billion funding request was too obvious to ignore and many people realised what impact this would have on existing business interests in energy.

    Why MSRS Abandoned ORNL Weinberg’s Firing by Bruce Hoglund

    A concise summary of the facts behind the closure of the Molten Salt Program at Oak Ridge.

    Here is the 2015 assessment report referenced in ORNL report 2022/2394.

    Electric Power Research Institute – Program on Technology Innovation: Technology Assessment of a Molten Salt Reactor Design – The Liquid Fluoride Thorium Reactor (LFTR)

    Electric Power Research Institute Report Abstract

    EPRI collaborated with Southern Company on an independent technology assessment of an innovative molten salt reactor (MSR) design—the liquid-fluoride thorium reactor (LFTR)—as a potentially transformational technology for meeting future energy needs in the face of uncertain market, policy, and regulatory constraints. The LFTR is a liquid-fueled, graphite-moderated thermal spectrum breeder reactor optimized for operation on a Th-233U fuel cycle. The LFTR design considered in this work draws heavily from the 1960s-era Molten Salt Reactor Experiment and subsequent design work on a similar two-fluid molten salt breeder reactor design. Enhanced safety characteristics, increased natural resource utilization, and high operating temperatures, among other features, offer utilities and other potential owners/operators access to new products, markets, applications, and modes of operation. The LFTR represents a dramatic departure from today’s dominant and proven commercial light water reactor technology. Accordingly, the innovative and commercially unproven nature of MSRs, as with many other advanced reactor concepts, presents significant challenges and risks in terms of financing, licensing, construction, operation, and maintenance.

    This technology assessment comprises three principal activities based on adaptation of standardized methods and guidelines: 1) rendering of preliminary LFTR design information into a standardized system design description format; 2) performance of a preliminary process hazards analysis; and 3) determination of technology readiness levels for key systems and components. The results of the assessment provide value for a number of stakeholders. For utility or other technology customers, the study presents structured information on the LFTR design status that can directly inform a broader technology feasibility assessment in terms of safety and technology maturity. For the developer, the assessment can focus and drive further design development and documentation and establish a baseline for the technological maturity of key MSR systems and components. For EPRI, the study offers an opportunity to exercise and further develop advanced nuclear technology assessment tools and expertise through application to a specific reactor design.

    The early design stage of the LFTR concept indicates the need for significant investment in further development and demonstration of novel systems and components. The application of technology assessment tools early in reactor system design can provide real value and facilitate advancement by identifying important knowledge and design performance gaps at a stage when changes can be incorporated with the least impact to cost, schedule, and licensing.


    Thorium Reactor Graphic by PopSci

    Finally, a reminder. Why all the fuss about Thorium Molten Salt anyway? What did those giants of nuclear energy see starting way back in 1947 that we don’t see today? It’s because of this chart by ANSTO of Australia. It’s a little known – public – secret, that Australia, part of the Generation IV Forum, but ironically staunchly anti nuclear, is also one of the strongest countries in technology development for Molten Salt Fission Energy powered by Thorium.

    ANSTO Energy Density
    ANSTO Energy Density (LWR = Solid Fission; MSR = Molten Salt Fission)

    We hoped you enjoyed this article, produced free for all advocates and students of Molten Salt Fission Energy powered by Thorium. If you like this work and want to see more, please support this work by going to our contributions page, where you can then find our Patreon account.


    Links and References

    1. https://www.ornl.gov/
    2. https://en.wikipedia.org/wiki/UT%E2%80%93Battelle
    3. https://flibe-energy.com/
    4. https://www.worldatlas.com/articles/how-many-elements-are-there.html
    5. https://en.wikipedia.org/wiki/Isotope
    6. https://www.osti.gov/biblio/5289038-molten-salt-reactors-efficient-nuclear-fuel-utilization-without-plutonium-separation
    7. https://www.osti.gov/biblio/5688579-molten-salt-reactors-efficient-nuclear-fuel-utilization-without-plutonium-separation
    8. https://digital.library.unt.edu/ark:/67531/metadc1033578/
    9. https://www.osti.gov/biblio/4099994-status-us-program-development-molten-salt-breeder-reactor
    10. https://www.linkedin.com/in/richard-reed-98769430/
    11. https://www.linkedin.com/in/louisegevans/
    12. https://www.linkedin.com/in/donald-kovacic-7b468a6/
    13. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/neutron/shielding-neutron-radiation/
    14. https://www.worldatlas.com/articles/how-many-elements-are-there.html
    15. https://en.wikipedia.org/wiki/Treaty_on_the_Prohibition_of_Nuclear_Weapons
    16. https://en.wikipedia.org/wiki/South_Africa_and_weapons_of_mass_destruction
    17. https://wp.towson.edu/iajournal/articles/2010-2019/fall-2010-issue/why-south-africa-dismantled-its-nuclear-weapons/
    18. https://www-pub.iaea.org/mtcd/publications/pdf/te_1450_web.pdf
    19. https://splash247.com/bill-gates-joins-nuclear-powered-shipping-push/
    20. https://www.epri.com/
    21. https://www.southerncompany.com/
    22. https://www.epri.com/research/products/000000003002005460
    23. https://newenergyandfuel.com/http:/newenergyandfuel/com/2011/11/04/thorium-fueled-nuclear-plant-to-be-built/
    24. https://www.youtube.com/watch?v=tyDbq5HRs0o
    25. https://www.legacy.com/us/obituaries/knoxnews/name/john-engel-obituary?id=16904544
    26. https://www.youtube.com/watch?v=_yO0Qk-_Gms
    27. https://www.linkedin.com/in/bruce-hoglund-52194814/
    28. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
    29. https://www.popsci.com/technology/article/2010-08/thorium-reactors-could-wean-world-oil-just-five-years/
    30. https://www.gen-4.org/

    #FissionEnergy #NuclearEnergy #TheThoriumNetwork #Fission4All #RadiationIsGood4U #GotThorium #ORNL #OakRidge #MSRE #MoltenSaltFissionEnergy #Thorium