Category: Turkey

  • Jeremiah Josey and The Thorium Network: Facilitating Türkiye’s Path to Advanced Thorium Energy

    Jeremiah Josey and The Thorium Network: Facilitating Türkiye’s Path to Advanced Thorium Energy

    Preparation for Japan and Turkey Meeting - Ankara Chamber of Industry - 17 November 2025
    Preparation for Japan – Türkiye Meeting – Ankara Chamber of Industry – 17 November 2021

    Post Highlights

    Posted 1 April 2023 by Jeremiah Josey

    Jeremiah Josey, Founder and Chairman at The Thorium Network, has played a pivotal role in bridging Türkiye’s national Thorium ambitions with global expertise and collaboration. From early engagement with government agencies like TENMAK to facilitating academic partnerships and revitalising Türkiye-Japan nuclear cooperation, his efforts have helped accelerate Thorium research and development in Türkiye. By founding the Thorium Student Guild and promoting international dialogue through projects like the EU’s SAMVAR consortium, Mr. Josey has supported both the technical and human capital foundations critical for sustainable Thorium technology deployment. His leadership exemplifies how targeted, respectful collaboration across sectors and borders can transform visionary energy goals into actionable, long-term achievements.

    Early Strategic Engagement

    In May 2021, following Türkiye’s renewed public commitment to advancing Liquid Fission Thorium Burner technology, Jeremiah Josey, founder and chairman of The Thorium Network, swiftly took action to support this transformative energy vision. Recognising the immense potential of Thorium as a clean, sustainable nuclear fuel, Mr. Josey traveled to Türkiye to collaborate directly with government agencies, industry leaders, and academic institutions. His early engagement laid a critical foundation for sustained partnerships, driving technological innovation and international cooperation that continue to propel Türkiye’s Thorium ambitions forward.


    Collaboration with TENMAK and Industry

    From the outset, Mr. Josey forged close working relationships with TENMAK (the Turkish Energy, Nuclear and Mineral Research Agency), providing expert advice on their Thorium energy initiatives. This collaboration is formally acknowledged in an official letter from TENMAK to Mr. Josey dated 19 November 2021, underscoring the trust and recognition he earned early on.


    Etimaden

    Beyond government agencies, he connected with industry leaders including ETİ Maden, which oversees the management of Türkiye’s Thorium resources—the second largest reserves in the world—and other major holding companies controlling substantial land suitable for Thorium production, some of which have mined magnetite deposits for over 10 years in southern Türkiye.


    Academic Partnerships

    Meetings with universities such as Hacettepe University in Ankara and Sinop University have been an important part of the collaboration efforts led by Jeremiah Josey. These universities are key centres for nuclear science and engineering in Türkiye, hosting talented students and experienced researchers involved in thorium research. Mr. Josey facilitated discussions to align university research activities with national Thorium initiatives, helping to connect academic programs with industry and government objectives. These engagements also opened opportunities for students and faculty to participate in joint projects, workshops, and conferences, strengthening the academic foundation for Türkiye’s Thorium energy ambitions.

    Hacettepe University, Ankara - 25 Nov 2021.jpg
    Hacettepe University, Ankara Nov 2021
    Sinop University - Jan 2022
    Sinop University Jan 2022

    Collaboration with Rolls Royce

    Jeremiah Josey’s Transformative Technical Impact

    Jeremiah Josey’s leadership in facilitating collaboration between The Thorium Network, Cranfield University, Rolls Royce, and Türkiye has opened the door for deployment of supercritical CO₂ Brayton cycle technology, a leap forward in naval engineering and energy efficiency.​

    Technical Breakthroughs Enabled

    • Up to 30% Waste Heat Recovery: Supercritical CO₂ turbines efficiently capture and convert up to 30% of waste heat from naval gas turbines, drastically improving ship energy utilisation and reducing losses.​
    • Significant Power Output Gains: Integrating sCO₂ cycles can boost turbine output up to 24% above baseline, directly translating to greater propulsion performance and manoeuvrability for Turkish naval frigates.​
    • Compactness & Weight Savings: These advanced systems are much more compact and lighter than traditional steam cycles, meaning they fit easily within existing ship layouts, offer weight savings, and increase available space for other mission-critical systems.​
    • Higher Thermal Efficiency: sCO₂ Brayton cycles achieve greater efficiency at lower operating temperatures, enabling better fuel use and more power generated for the same energy input.​
    • Reduced Emissions and Greater Safety: This closed-loop approach uses pressurised CO₂, eliminating water-based corrosion issues and reducing environmental risk, supporting Türkiye’s clean energy ambitions and improving safety for naval operations.​
    • Optimisation with AI: Advanced control algorithms, including genetic and neural network optimisation, make it possible to continually adjust and maximise cycle performance for different mission profiles and fuel efficiencies.​

    Real-World Returns

    For each Turkish naval frigate, the use of this technology directly leads to fuel savings of hundreds of thousands of euros per year, the ability to travel significantly farther and faster, higher reliability thanks to supplementary power in emergencies, and lower carbon footprints. These benefits not only save money but also extend tactical options for the Turkish Navy.

    Pioneering Leadership

    Jeremiah’s hands-on orchestration of this international knowledge transfer is transforming Türkiye’s approach to maritime power and clean energy. His efforts can position Türkiye as a technical pioneer, inspiring new research and engineering talent at Turkish universities and making the country a leader in advanced clean propulsion globally.​

    Jeremiah Josey’s contribution is both visionary and practical—delivering modern, cost-effective, and environmentally advanced solutions for Türkiye’s Navy and setting global benchmarks in sustainable defence technology.

    Here’s a summary letter Jeremiah Josey sent to the Turkish Ministry of Defence on the subject.


    Revitalising Türkiye-Japan Nuclear Cooperation

    Mr. Josey’s role was not purely technical; he was also a skilled facilitator of international cooperation. Japan played an especially influential role in this endeavour. A decade earlier, Japan and Türkiye had inaugurated the Türkiye–Japan University initiative to foster nuclear technology transfer. However, the programme had become mired in bureaucratic obstacles. Leveraging his diplomatic acumen, Mr. Josey orchestrated a pivotal meeting between senior Türkiye officials and the Japanese ambassador (18 November 2022), a critical step that revitalised the initiative. Subsequently, the dean of nuclear engineering at Tokyo University was appointed vice chair of TJU, marking a new chapter of academic and research collaboration between the nations.

    Preparation for Japan and Turkey Meeting - Ankara Chamber of Industry - 17 November 2025
    Preparation for Japan and Türkiye Meeting – Ankara Chamber of Industry – 17 November 2025
    Turkey and Japan Shake on TJU 2015
    Türkiye and Japan Shake on TJU 2015
    TJU Logo

    International Networking and Site Visits

    As part of fostering international connections, Jeremiah Josey engaged with Japanese companies involved in Türkiye’s nuclear energy sector and made site visits to the Sinop area, where significant energy projects are proposed. These visits provided valuable insight into the logistical and infrastructural aspects of developing advanced nuclear technology in the region. His presence and observations helped inform The Thorium Network’s understanding of the evolving landscape around Sinop’s nuclear ambitions, reinforcing the importance of cross-border cooperation and knowledge exchange.

    İnceburun Lighthouse, Sinop, Northern Turkey - Inspecting the Mitsubishi Nuclear Site - Jan 2022
    İnceburun Lighthouse, Sinop, Northern Türkiye – Inspecting the Mitsubishi Nuclear Site – Jan 2022
    Engaging Japanese Companies - Dec 2021
    Engaging Japanese Companies – Dec 2021

    Local Collaborations

    In addition to these institutional efforts, Mr. Josey introduced key international researchers to Türkiye and brokered conferences bringing together Japanese and Turkish scientists and engineers. These forums have helped foster essential dialogue and knowledge exchange, with videos of some conferences publicly available, such as these ones:


    Coverage of this collaborative spirit and passion for Thorium technology is also featured in articles like this one:


    Advancing Thorium Separation with NATEN

    Another important aspect of Jeremiah Josey’s involvement in Türkiye’s Thorium development has been his collaboration with the Rare Earth Elements Research Institute (NATEN) under TENMAK, based in Ankara.

    Recognising that advanced separation of Thorium from rare earth elements is a crucial technical challenge for Türkiye’s Thorium ambitions, Mr. Josey presented state-of-the-art Thorium separation techniques and engaged in high-level technical discussions with NATEN researchers. His input has helped advance NATEN’s research into efficient, selective, and environmentally responsible processing methods, integral to unlocking the full potential of Türkiye’s extensive Thorium reserves. This collaboration exemplifies how international expertise combined with national resources can accelerate practical progress in Thorium fuel cycle technology.

    Rare Earths of Turkey
    Rare Earths of Türkiye

    EU SAMVAR Project Participation

    Mr. Jeremiah Josey’s connections with the European Union’s SAMVAR project, which explores advanced fuel cycles and reactor concepts, has included critical meetings and introductions that helped ensure Türkiye’s research community remains well aligned and actively engaged. Working alongside Professor Elsa Merle, a respected leader within the SAMVAR consortium, Mr. Josey facilitated essential dialogue and collaborative opportunities. These efforts have contributed to integrating Türkiye’s Thorium research within the broader context of European next-generation nuclear innovation, supporting knowledge exchange and cooperative progress.


    Empowering the Next Generation: Thorium Student Guild

    Remembering that it is the youth who will carry thorium technology into the future, Mr. Jeremiah Josey also founded the Turkish Thorium Student Guild. This initiative plays a crucial role in nurturing the next generation of nuclear scientists and engineers by providing them with educational resources, mentorship, and networking opportunities. Under Mr. Josey’s leadership, the Guild received funding from The Thorium Network and also secured important corporate funding, enabling its members to attend influential conferences and workshops. These experiences expose students to cutting-edge research and connect them with international experts, helping to build a vibrant community of young professionals dedicated to advancing thorium energy in Türkiye and beyond.

    Turkish Thorium Student Guild Executive
    Türkiye Student Guild Executive
    Turkish Thorium Student Guild Funding
    Securing Corporate Funding
    Turkish Thorium Student Guild Attending Corporate Events
    Students Attending Industry Conferences

    Formation of ThorAtom and Legacy

    Capping off Mr. Josey’s extensive efforts in Türkiye was the recent formation of ThorAtom, led by distinguished and respected Turkish engineers Dr. Tarık Öğüt and Dr. Reşat Uzmen. This milestone consolidates years of partnership-building, research coordination, and strategic planning spearheaded by Mr. Josey and The Thorium Network.

    The Team at ThorAtom Turkey
    The Team at ThorAtom Türkiye, led by Dr. Tarık Öğüt

    Moving Forward with Thorium

    As Türkiye continues to advance its Thorium energy ambitions, TheThorium.Network remains committed to fostering international collaboration, providing strategic expertise, and supporting innovative partnerships. Organizations, governments, and academic institutions interested in accelerating Thorium development are encouraged to connect with The Thorium Network to explore tailored solutions and collaborative opportunities. Through respectful partnership and shared vision, we can unlock the full potential of clean, sustainable nuclear energy for a safer and greener future.

    To begin a conversation and learn more about how The Thorium Network can support your Thorium initiatives, please reach out to us via SAFE Fission Consult™.


    Key Takeaways

    • Jeremiah Josey has been instrumental in linking Türkiye’s national Thorium initiatives with global expertise and collaboration.
    • Early and ongoing engagement with institutions like TENMAK and ETİ Maden has helped advance Türkiye’s Thorium research and resource management.
    • Partnerships with universities such as Hacettepe and Sinop University have strengthened academic foundations for Thorium technology development.
    • Diplomatic facilitation revitalised the Türkiye-Japan University initiative, promoting knowledge exchange and nuclear technology collaboration.
    • Site visits and engagements with Japanese companies contributed to understanding infrastructure and international cooperation opportunities.
    • Technical input and collaboration with NATEN have supported advanced Thorium separation techniques critical to efficient fuel cycle progress.
    • Participation in the European Union’s SAMVAR project aligns Türkiye’s Thorium research with pioneering European nuclear innovations.
    • The Turkish Thorium Student Guild, founded by Josey, nurtures the next generation of nuclear scientists through mentorship, funding, and conference participation.
    • The recent formation of ThorAtom consolidates years of partnership-building and research coordination driven by Josey and The Thorium Network.
    • The Thorium Network offers expertise and a collaborative platform for organisations and countries seeking to accelerate sustainable Thorium energy development.

    References

    1. Official letter from TENMAK (the Turkish Energy, Nuclear and Mineral Research Agency) to Jeremiah Josey dated 19 November 2021, acknowledging collaboration and advisory work on Thorium development initiatives. Available from The Thorium Network and TENMAK archives.
    2. The Thorium Network – Company website detailing mission, projects, and team leadership including founder Jeremiah Josey. https://TheThorium.Network
    3. ETİ Maden – Turkish state enterprise managing Thorium mineral resources, one of the largest reserves globally, located in Türkiye. Government resource information: https://www.enerji.gov.tr/info-banknatural-resourcesthorium
    4. Information on FİGES A.Ş., a Turkish R&D organisation specialising in applied engineering and Thorium-related technology collaborations. https://figes.com.tr/en/who-we-are/affiliates/thoratom
    5. ThorAtom – Turkish nuclear technology company established in 2023, led by Turkish nuclear experts Dr. Tarık Öğüt and Dr. Reşat Uzmen. https://thoratom.com
    6. Türkiye–Japan University initiative – Bilateral academic and nuclear technology cooperation revitalised through diplomatic efforts including a key meeting arranged between senior Türkiye officials and the Japanese ambassador.
    7. YouTube video – Conference organised by Jeremiah Josey featuring joint scientific discussion between Turkish and Japanese researchers on Thorium technology: https://www.youtube.com/watch?v=NEDK_MAWQD0
    8. Article inspired by Türkiye-Japan Thorium sector collaboration and conferences, hosted by The Thorium Network: https://thethorium.network/the-secret-to-success-in-this-sector-is-to-be-passionate/
    9. The EU SAMVAR Project – European research collaboration on advanced nuclear fuel cycles and reactor concepts, with active participation from Türkiye facilitated by Jeremiah Josey in cooperation with Professor Elsa Merle. Information available via SAMVAR consortium publications and related EU research portals.
    10. TENMAK Institutional Archive – Official repository containing research reports on Thorium reserves, nuclear technology development, and strategic plans for Thorium utilisation in Türkiye: https://kurumsalarsiv.tenmak.gov.tr/handle/20.500.12878/1293?locale=en
    11. Jeremiah Josey’s presentations and interviews on Thorium technology, blockchain applications in nuclear energy, and project vision shared at various conferences, including Digitalks Brazil 2020: youtube.com (search ‘Jeremiah Josey Thorium Network’)
    12. Historical geological data on Thorium reserves in Türkiye, including Eskişehir-Sivrihisar, Malatya-Kuluncak, and Beylikova areas, from Turkish mineral surveys and international databases.
    13. Details on TENMAK’s formation and role as a unified research organisation focused on nuclear and mineral resources in Türkiye, including Thorium and related technologies.
    14. NATEN, https://stip.oecd.org/stip/interactive-dashboards/policy-initiatives/2023%2Fdata%2FpolicyInitiatives%2F99992379

  • The Secret to Success in this Sector is to Be Passionate

    Post created by Jeremiah Josey and the team at The Thorium Network featuring content from Başkani Gül GOKTEPE, Nutek Inc, Türkiye

    NÜKAD BAŞKANI GÜL GÖKTEPE:
    “BU SEKTÖRDE BAŞARININ SIRRI, TUTKULU OLMAK”

    NÜKAD CHAIRMAN GÜL GÖKTEPE:
    “THE SECRET TO SUCCESS IN THIS INDUSTRY IS TO BE PASSIONATE”

    gul goltepe president of nutek inc of turkey
    President / Başkani Gül GÖKTEPE, Nutek Inc, and Chapter President, Women in Nuclear, Türkiye

    Tarih boyunca devrim niteliğinde buluşlarıyla çok sayıda kadın insanlığın gelişimine katkı sağlayan sayısız başarıya imza atarken, bu başarıların çoğu gölgede kaldı. Bilim, teknoloji, mühendislik ve matematik alanlarında çalışan kadınlara yönelik asırlardır var olan ve Einstein’ın “atom çekirdeğini parçalamaktan daha zordur” dediği ön yargıların da bunda etkisi büyük oldu.  Yaşadıkları dönemin önüne geçmeyi başaran bilim kadınları ise halen günümüze ışık olmaya devam ediyorlar. Radyolojiden kanser tedavilerinde kullanılan radyoterapiye kadar çok sayıda alanın temelini oluşturan, iki Nobel ödüllü Polonya asıllı Kimyager ve Fizikçi Marie Curie, nükleer füzyon konusundaki buluşları ile tarihe geçmeyi başaran Avusturyalı Fizikçi Lise Meitner, nükleer endüstriye kazandırdığı teknolojilerle ‘elementlere hükmeden kadın’ diye tanımlanan Rus nükleer fizikçi Zinaida Yerşova nükleer alanda ‘ilham kaynağı’ olan önemli isimler.

    While many women have achieved countless successes that have contributed to the development of humanity with their revolutionary inventions throughout history, most of these successes have been overshadowed. The prejudices against women working in the fields of science, technology, engineering and mathematics, which have existed for centuries and that Einstein said “it is harder than splitting the atomic nucleus”, had a great effect on this. The women of science who managed to get ahead of the period they lived in still continue to be the light of today. Two Nobel laureates, Polish-born Chemist and Physicist Marie Curie, which forms the basis of many fields from radiology to radiotherapy used in cancer treatments, Austrian Physicist Lise Meitner, who managed to go down in history with her discoveries on nuclear fusion, Russian nuclear physicist who is defined as “the woman who rules the elements” with the technologies she brought to the nuclear industry. Zinaida Yerşova is an important name in the nuclear field who is an ‘inspiration’.

    ROL MODELLERİN ROLÜ

    Zorlu koşullara göğüs gererek, inandığı şeyden vazgeçmeyen cesur ve güçlü kadınların ‘yaşanabilir bir dünya için’ mücadeleleri bugün de devam ediyor. Ancak, hem ortaöğretim hem de yükseköğretimde kadın sayısındaki artışlara rağmen, halen “STEM” adı verilen bilim, teknoloji, mühendislik ve matematik alanlarında yeterince temsil edilmiyorlar.  Uluslararası Atom Enerjisi Ajansı’na (IAEA) göre gençler meslek seçimi yaparken, toplumun bir bilim insanının neye benzediğine dair klişe bakış açılarından ve önyargılarından çok etkileniyorlar. Özellikle nükleer alanda rol modellerin, gençlerin tercihinde önemli rol oynadığına dikkat çekiliyor. Türkiye’de de son yıllarda başarılı bilim kadınları, ilham veren hikâyeleri ve yürüttükleri projelerle pek çok gence ilham kaynağı oluyorlar. Radyolojiden çevreye, sağlıktan tarıma, güvenlikten iklim değişikliğine kadar farklı alanlarındaki örnek çalışmalarıyla nükleere yönelik mitlerin ve ön yargıların önüne geçmeyi de başarıyorlar.

    THE ROLE OF ROLE MODELS

    The struggle of brave and strong women, who do not give up on what they believe in by enduring difficult conditions, continues today for a livable world. However, despite the increases in the number of women in both secondary and higher education, they are still underrepresented in the so-called “STEM” fields of science, technology, engineering and mathematics. According to the International Atomic Energy Agency (IAEA), when choosing a career, young people are influenced by society’s stereotypical viewpoints and prejudices about what a scientist looks like. It is noted that role models, especially in the nuclear field, play an important role in the choice of young people. In recent years, successful women scientists in Turkey have been a source of inspiration for many young people with their inspiring stories and projects. With their exemplary work in different fields from radiology to the environment, from health to agriculture, from security to climate change, they also succeed in preventing myths and prejudices about nuclear.

    Türkiye Red Map
    Türkiye

    SORUNLAR İÇİN ORTAK MÜCADELE

    Avrupa Nükleer Araştırma Merkezi CERN’de önemli çalışmalara imza atan, uzay radyasyonu ve uzay fiziği konularında uluslararası başarılara sahip, “Dünyanın bilime, bilimin kadınlara ihtiyacı var” mottosu ile verilen ‘Uluslararası UNESCO Yükselen Yetenek Ödülü’nü 2017 yılında alan Prof. Dr. Bilge Demirköz, önemli rol modellerden biri. Türkiye’nin ilk ‘Parçacık Radyasyonu Test Altyapısı Projesi’ şu anda onun liderliğinde sürdürülüyor.  Demirköz, bir yandan da gençleri bilim dünyasına teşvik edecek projelere katılıyor, konferanslar veriyor, sergiler düzenliyor.  Demirköz,  kadınları bilime teşvik etmenin önemini şöyle anlatıyor: “Dünyanın yükleri ve problemleri artıyor. Bu problemleri çözmek için güce ihtiyacımız var. Bu gücün yüzde 50’sini kadınlar oluşturuyor. Küreselleşen dünyada ise kadının geride kaldığı toplumlar gelişemez. Bu nedenle hem problemleri hep birlikte çözmek hem de kadınların gelişimini desteklemek için kadınları bilime daha çok teşvik etmeliyiz.”

    COMMON FIGHTING FOR PROBLEMS

    Having carried out important studies at the European Nuclear Research Center, CERN, having international achievements in space radiation and space physics, and receiving the “International UNESCO Emerging Talent Award” in 2017, given with the motto “The world needs science and science needs women”, Prof. Dr. Bilge Demirköz is one of the important role models. Turkey’s first ‘Particle Radiation Test Infrastructure Project’ is currently under his leadership. Demirkoz also participates in projects that will encourage young people to the world of science, gives conferences and organizes exhibitions. Demirköz explains the importance of encouraging women to science as follows: “The burdens and problems of the world are increasing. We need power to solve these problems. Women make up 50 percent of this power. In the globalizing world, societies where women are left behind cannot develop. For this reason, we should encourage women to science more, both to solve problems together and to support the development of women.”

    “The world needs science and science needs women.”

    Prof. Dr. Bilge Demirköz, Ankara, Turkey
    bilge demirkoz
    “The world needs science and science needs women” – Prof. Dr. Bilge Demirköz,, Ankara, Turkey

    TÜM DÜNYADA BİTKİLERDE VERİM ARTIŞI

    Türkiye’de yürüttüğü sayısız başarılı tarım projesinin ardından IAEA’da Nükleer Bilimler ve Uygulamalar Bölümü’nde ‘Bitki Islahçısı ve Genetikçi’ olarak çalışan Türk bilim insanı Ziraat Mühendisi Fatma Sarsu, ‘rol model’ kadınlardan biri.  Sarsu, IAEA’nın sitesinde çok sayıda gence ilham verecek hikâyesini şöyle anlatıyor: “Babamın çiftliğinde büyüdüm. Onun ekinlerine duyduğu sevgiyi, onlara nasıl baktığını izlemek beni tarımda çalışmaya ikna etti. Ürün ve mutasyon ıslahını incelemek, mahsul verimliliğini nasıl artıracağımızı öğrenmenin en hızlı yolu olarak ortaya çıktı. IAEA’da bitki ıslahı ve genetiği üzerinde çalışmak, tüm dünyada tarım ürünleri verimliliğini artırmak gibi daha da büyük bir çiftlik verdi bana.  Her gün profesyonel bir tarım bilimcisi olarak insanlığın yararına çalıştığımı bilmek bana büyük mutluluk veriyor.”

    INCREASED PRODUCTION OF PLANTS ALL OVER THE WORLD

    Agricultural Engineer Fatma Sarsu, a Turkish scientist working as a ‘Plant Breeder and Geneticist’ in the Nuclear Sciences and Applications Department of the IAEA, after numerous successful agricultural projects she carried out in Turkey, is one of the ‘role model’ women. Sarsu tells his story that will inspire many young people on the IAEA website: “I grew up on my father’s farm. Watching his love for his crops and how he looked after them convinced me to work in agriculture. Studying crop and mutation breeding has emerged as the fastest way to learn how to increase crop productivity. Working on plant breeding and genetics at the IAEA has given me an even bigger farm to increase crop productivity around the world. It gives me great pleasure to know that every day I work for the benefit of humanity as a professional agronomist.”

    Fatma (Demir) Sarsu
    Fatma (Demir) Sarsu

    YAŞAMI İYİLEŞTİRME SORUMLULUĞU

    Türkiye’nin çeşitli dönemlerdeki nükleer teknoloji transferi ve nükleer santral kurma hazırlık süreçlerine yakından tanıklık eden Türkiye’de “Nükleer Alanda Kadınlar” (NÜKAD) olarak bilinen, “WIN (Women in Nuclear) Global Turkey” Grubu’nun kurucusu ve Başkanı olan B. Gül Göktepe de nükleer alanın öncü isimlerinden. Çekmece Nükleer Araştırma Merkezi için geliştirdiği Göl Projesi, Birleşmiş Milletler (BM) ve Uluslararası Atom Enerjisi Ajansı’nın (IAEA)  en başarılı teknik işbirliği projeleri arasında gösterilen “Karadeniz’in Çevresel Yönetimi” gibi dikkat çeken çevre projelerine imza attı. BM Viyana Daimi Temsilciliği’nde Türkiye’nin ilk kadın Nükleer Ataşesi olarak görev yaptı. “Nükleer alanda çalışmak büyüleyici olduğu kadar zordur da” ifadelerini kullanan Göktepe, “Yaşamı iyileştirmek ve gezegeni korumak gibi büyük sorumluluk taşıyoruz. Ve bu sektörde başarılı olmanın sırrı, tutkulu olmak! Nükleerde kadın sayımız gün geçtikçe artacak, buna inanıyorum. Yapacak çok işimiz var ve dünyanın bize ihtiyacı var!” diyor.

    LIFE IMPROVEMENT RESPONSIBILITY

    Witnessing Turkey’s nuclear technology transfer and nuclear power plant preparation processes in various periods, Gül Göktepe., the founder and President of the “WIN (Women in Nuclear) Global Turkey” Group, known as “Women in the Nuclear Field” (NÜKAD) in Turkey. Gül Göktepe is one of the leading names in the nuclear field. She undersigned remarkable environmental projects such as the Lake Project she developed for the Çekmece Nuclear Research Center and the “Environmental Management of the Black Sea”, which is shown as one of the most successful technical cooperation projects of the United Nations (UN) and the International Atomic Energy Agency (IAEA). She served as Turkey’s first female Nuclear Attaché at the UN Vienna Permanent Mission. Göktepe said, “Working in the nuclear field is as challenging as it is fascinating” and said, “We have a great responsibility to improve life and protect the planet. And the secret to success in this industry is to be passionate! I believe that the number of women in nuclear will increase day by day. We have a lot of work to do and the world needs us!” she says.

    AKKUYU GİBİ UZUN İNCE BİR YOL

    Hayat hikâyesini “Türkiye’nin Akkuyu hikâyesi gibi zorluklarla dolu, çok uzun ve ince bir yol” olarak tanımlayan Göktepe, İngiltere’de atom mühendisliği okuduğunu, ülkeye dönüşünde katıldığı enerji kongresinde, dönemin Enerji ve Tabii Kaynaklar Bakanının ‘600 MW gücündeki ilk nükleer santralin Akkuyu’da kurulacağı ve 1986 yılında işletmeye alınacağı müjdesi’ ile sektöre umutla adım attığını söylüyor.  “O kongreden bu yana nerdeyse 44 yıl geçmiş. Düşünüyorum da o zamandan bu yana nükleerde dünya nerede, biz neredeyiz” diyen Göktepe, Türkiye’nin nükleer santral hikâyesini ise şu sözlerle özetliyor: “Türkiye’nin ilk nükleer santrali Akkuyu Nükleer Santrali projesinde geçmişte öngörülemeyen zorluklar, ertelemeler yaşandı. Şimdi, ne mutlu ki inşaatı tüm hızıyla sürüyor. Kafamda bunca yıllık zorlu mücadeleden sonra değişmeyen bir tek olgu var. O da nükleer teknolojinin dünyanın ve Türkiye’nin geleceği için vazgeçilemez olduğu. Şu anda dünyanın geleceğini tehdit eden en büyük tehlike; iklim değişikliği. Sera gazı emisyonlarını azaltmak için karbonsuz elektrik üretimine ihtiyaç var. O da yenilenebilir enerji, nükleer santraller ve karbon yakalama ve depolamalı fosil yakıtlar (carbon capture and storage-CCS)  olmak üzere sadece üç yoldan elde edilebiliyor.”

    A LONG THIN ROAD LIKE AKKUYU

    Defining her life story as “a very long and narrow road full of difficulties, like Turkey’s Akkuyu story”, Göktepe said that she studied atomic engineering in England, and that she attended the energy congress on her return to the country, and that the Minister of Energy and Natural Resources of the time said that the first nuclear power plant with 600 MW power was Akkuyu. She says that she stepped into the sector with hope with the good news that it will be established in ‘Turkey and will be put into operation in 1986’. “It has been almost 44 years since that congress. Goktepe, who says, “Where are we and where are we in the nuclear field since then,” said, and summarizes Turkey’s nuclear power plant story with these words: “In the past, unforeseen difficulties and delays were experienced in the Akkuyu Nuclear Power Plant project, Turkey’s first nuclear power plant. Now, fortunately, its construction is in full swing. There is only one fact in my mind that has not changed after all these years of hard struggle. That nuclear technology is indispensable for the future of the world and Turkey. The biggest danger threatening the future of the world right now; climate change. Carbon-free electricity generation is needed to reduce greenhouse gas emissions. It can be obtained in only three ways: renewable energy, nuclear power plants and fossil fuels with carbon capture and storage (CCS).

    President of Nutek inc, and Women in Nuclear, Turkey, Gül Göktepe of Istanbul, Turkey was the first women representing Turkey at the IAEA in Vienna, Austria, having also spent time on numerous international nuclear missions, including the Chernobyl and Fukushima incidents. She has published over one hundred and thirty scientific papers and authored many articles related to nuclear power stations, and the Black Sea. She has received numerous awards and fellowships including an international medal, the Black Sea Medal, awarded for outstanding services to protect the Black Sea environment, by UNDP GEF, BSC and BSERP.

    Akkuyu Nuclear Power Station, Turkey
    Akkuyu Nuclear Power Station, Turkey by Rosatom of Russia

    BAŞARILARI DİKKAT ÇEKİCİ

    Hacettepe Üniversitesi Radyasyon Onkolojisi Ana Bilimdalı Radyoterapi Fiziği Programı’ndaki doktora çalışması kapsamında geliştirdiği ‘radyoterapide her hastaya ve bölgeye (meme, tiroid vb.) uyabilecek zırh ve karşı memeyi tedavi alanından uzaklaştıracak sütyen tasarımıyla Hacettepe Üniversitesi ve Hacettepe Teknokent Teknoloji Transfer Merkezi işbirliği ile düzenlenen “Hacettepe Hamle İnovasyon Yarışması”nda 2018 yılında Sağlık Teknolojileri alanında birinci olan Nükleer Enerji Mühendisi Nur Kodaloğlu, alanın genç ve başarılı isimlerinden biri. 2019 yılında Teknofest kapsamında Türk Patent Enstitüsü’nün düzenlediği ISIF 2019- Uluslararası Buluş Fuarı’nda “İkincil Kanser Riskini Azaltan Bir Sütyen” patenti ile ‘bronz madalya’ ile ödüllendirilen ve yeni buluşlar üzerinde çalışan Kodaloğlu kadınların bilime katkısını şu sözlerle vurguluyor: “Farklı meslek gruplarındaki kadınlar toplumun çeşitliliğini yansıtmaktadır. Bugün hem nükleer mühendislik alanında, hem de hastanelerin radyoterapi bölümlerindeki kadın medikal fizikçi ve kadın hekimler ile nükleer tıp, radyoloji bölümlerindeki kadın hekimlerin sayısı azımsanmayacak kadar çok. Yaptıkları yayınlar göz önünde bulundurulduğunda bilime yaptıkları katkının da bir o kadar fazla olduğu görülecektir. Kadınların toplumun nükleer teknolojilere olan güvenini arttırmada da önemli rolleri var.”

    SUCCESSFUL ACHIEVEMENTS

    Organized in cooperation with Hacettepe University and Hacettepe Teknokent Technology Transfer Center, with the armor design that can fit each patient and region (breast, thyroid, etc.) and the bra that will move the opposite breast away from the treatment area, she developed within the scope of her doctoral study in the Radiation Oncology Department of Hacettepe University, Radiotherapy Physics Program. Nuclear Energy Engineer Nur Kodaloğlu, who won the first place in the field of Health Technologies in the Hacettepe Move Innovation Competition in 2018, is one of the young and successful names in the field. Kodaloğlu, who was awarded the ‘bronze medal’ with the patent “A Bra that Reduces the Risk of Secondary Cancer” at the ISIF 2019-International Inventions Fair organized by the Turkish Patent Institute within the scope of Teknofest in 2019 and working on new inventions, emphasizes the contribution of women to science with the following words: “Different professions Today, the number of female medical physicists and female physicians in both nuclear engineering and radiotherapy departments of hospitals, and female physicians in nuclear medicine and radiology departments is substantial. “Women also play an important role in increasing society’s confidence in nuclear technologies.”

    Nur Kodaloglu
    Nur Kodaloglu, MSc. Medical Physicist- Nuclear Engineer

    POZİTİF KATKI SAĞLIYORUZ

    “Teknolojik gelişmeyle paralel nükleer enerjinin kullanıldığı her alanda Türkiye’yi ileriye taşıyacağına inanıyorum” diyen Feride Kutbay, nükleer reaktör güvenliği alanında yaptığı çalışmalarla dikkat çeken başarılı genç bilim insanlarından biri. İstanbul Teknik Üniversitesi (İTÜ) Enerji Enstitüsü’nde Nükleer Araştırmalar Ana Bilim Dalı’nda Araştırma Görevlisi olarak görev yapan Kutbay, Türkiye’de bu alanda yeni iş fırsatlarının da artmaya başladığına dikkat çekerek, şunları ifade ediyor: “Nükleer güç santralini barındıran bir ülke olarak, nükleer reaktörlerin işletilmesi için yetiştirilen uzmanların dışında IAEA standartlarının ülkemizde uygulanmasında görev alacak uzmanlara da ihtiyaç var. Şu anda Rusya’da eğitim gören öğrencilerimizin dışında Türkiye, son birkaç yıldır Milli Eğitim Bakanlığı’na bağlı yurt dışı yüksek lisans bursu ile nükleer alanda yetiştirilmek üzere farklı ülkelere öğrenci gönderiyor. Geleceğe yönelik insan kaynağımızı güçlendiriyoruz. Kadın istihdam oranının artırılması ve kadın profesyonellerin yetiştirilmesine yönelik adımların Türkiye’de gelişmekte olan nükleer sektöre pozitif yönde etki edeceğini düşünüyorum. Kadınlar bu mesleğe enerji ve güç veriyor.”

    WE PROVIDE POSITIVE CONTRIBUTION

    Feride Kutbay, who said, “I believe that it will carry Turkey forward in every field in which nuclear energy is used in parallel with technological development,” is one of the successful young scientists who draw attention with her studies in the field of nuclear reactor safety. Kutbay, who works as a Research Assistant in the Department of Nuclear Research at Istanbul Technical University (ITU) Energy Institute, draws attention to the fact that new job opportunities have started to increase in this field in Turkey, and says: “As a country that hosts a nuclear power plant, In addition to the experts trained for the operation of nuclear reactors, there is also a need for experts who will take part in the implementation of IAEA standards in our country. Apart from our students currently studying in Russia, Turkey has been sending students to different countries to be trained in the nuclear field for the last few years, with a graduate scholarship from the Ministry of National Education. We are strengthening our human resources for the future. I think that steps towards increasing the rate of female employment and training female professionals will have a positive impact on the developing nuclear sector in Turkey. Women give energy and strength to this profession.”

    feride kutbay
    Feride Kutbay, Nuclear Engineer

    “I believe that it will carry Turkey forward in every field in which nuclear energy is used in parallel with technological development.”

    Feride KUTBAY, Istanbul Institute of Technology. Türkiye
    gul goktepe cekmece
    Gül Göktepe

    First published in Gulnar City 8 July 2020. Reproduced here in English and Turkish.

    Links and References

    1. https://www.gulnarcity.com/m-haber-6082.html?islem=haber&id=6852
    2. http://nutekinc.biz/en/gul-goktepe
    3. https://www.enerjigunlugu.net/goktepe-hem-cevreci-hem-nukleer-karsiti-olamazsiniz-37611h.htm
    4. https://world-nuclear.org/information-library/country-profiles/countries-t-z/turkey.aspx
    5. https://nonproliferation.org/the-black-sea-women-in-nuclear-network/
    6. https://en.wikipedia.org/wiki/Turkey
    7. https://www.linkedin.com/in/b-g%C3%BCl-g%C3%B6ktepe-71420888/
    8. https://en.wikipedia.org/wiki/Marie_Curie
    9. https://en.wikipedia.org/wiki/Lise_Meitner
    10. https://en.wikipedia.org/wiki/Zinaida_Yershova
    11. https://www.linkedin.com/in/bilgedemirkoz/
    12. https://www.iaea.org/newscenter/multimedia/photoessays/women-in-nuclear-science
    13. https://www.linkedin.com/in/fatma-sarsu-71733361/
    14. https://en.wikipedia.org/wiki/Akkuyu_Nuclear_Power_Plant
    15. https://rosatom.ru/en/
    16. https://www.linkedin.com/in/nur-kodaloglu-62582574
    17. https://www.linkedin.com/in/feride-kutbay-2b0943155

    #Turkey #Türkiye #NuclearEnergy #Fission #WomenInNuclear

  • Interview #3, Dr. Reşat Uzmen, Nuclear Technology Director of FİGES. Part of the Thorium Student Guild Interview Series, “Leading to Nuclear”

    Post created by Jeremiah Josey and Rana, president of the Student Guild

    nukleer enerji seminer 3
    Dr. Reşat Uzmen
    figes logo

    Since the 1960’s Turkey were trying to get involved with nuclear energy. Turkey was one of the countries that participated in the International Conference on the Peaceful Uses of Atomic Energy, held in Geneva in 1955 September. There is no doubt that Turkey wants to use nuclear energy for energy production. In Turkey, there are many experts that have knowledge about nuclear fission technology. Dr. Reşat Uzmen is one of the most important people who is experienced in the nuclear fuel area. During the interview, his ideas and visions enlighten us about the future of Molten Salt Fission Technology. Here is another instructive interview for building a MSR!

    atoms for peace symbol

    The Atoms for Peace symbol was placed over the door to the American swimming pool reactor building during the 1955 International Conference on the Peaceful Uses of Atomic Energy in Geneva, often called the Atoms for Peace conference.

    Rana
    President of the Student Guild
    The Thorium Network

    Leading to Nuclear Interview Series, Interview #3, Dr Resat Uzmen of Figes Turkey

    Mr. Reşat, can you tell us a little about yourself?

    I graduated from İstanbul Technical University (İTU) in the chemical engineering department. I did my master’s degree in İTU also. As soon as I finished the department I became a researcher in The Çekmece Nuclear Research and Training Center, known as ÇNAEM. My research was about how uranium could be treated to obtain an uranium concentrate. I did my doctor’s degree in that topic. Back then, it was so hard to get information because it is a delicate technology. That’s why we did the research by ourselves. Think about that: there was no internet! There was a library in ÇNAEM, it still remains there. All the reports that were collected from all over the world were kept here. We benefit from those reports that were about uranium and thorium. In addition, getting chemicals was difficult. The ores that we were working on were coming from Manisa so mine was tough to process. Despite all these obstacles Turkey needed uranium so we have done what has to be done. I am the founder of “the nuclear fuel technology department in ÇNAEM”. This department was focused on producing uranium fuel that could be ready for fuelling and we did it. We produced uranium pellets by ourselves in our laboratories. We did research about ore sorting of thorium and how it can be used in nuclear reactors. Now I am working as a nuclear technology director at FİGES.

    fb379e79210544489deb6002c06ad8b5
    Dr. Reşat Uzmen, Thorium NTE Field in Burdur Turkey

    “Turkey is capable of designing its own reactor now!”

    Dr. Reşat Uzmen

    What are your thoughts on Turkey’s nuclear energy adventure? Although nuclear engineering education has been given at Hacettepe University since 1982, Turkey has never been able to gain an advantage in nuclear energy. What could be the main reasons for this?

    Nuclear energy needs government support and government incentive. Government policy must include nuclear energy. In Turkey, nuclear energy was too personal. A government is formed then a team becomes the charge of the Turkey Atomic Energy Agency and this team is working hard, trying to encourage people about nuclear energy but then the new government is formed and the team is changed. Unfortunately, this is how it is done in Turkey. Also, you need money to build reactors. There were some countries that try to build a nuclear reactor in Turkey. Once CANDUs was very popular in Turkey. Canadians supported us a lot. Argentineans came with CAREM design and wanted to develop the design with Turkey also they wanted to build CAREM in Turkey, it was a great offer but the politicians at that time were not open up to this idea. Nuclear energy must be government policy and it should not be changed by different governments.

    As you know, there is a PWR-type reactor under construction in cooperation with Rosatom and Akkuyu in our country. Do you think Turkey’s first reactor selection was the right choice?

    This cooperation is not providing us any nuclear technology. When The Akkuyu Nuclear Power Plant is finished we will have a nuclear reactor that is operating in Turkey but we can not get any nuclear technology transformation. Right now Turkey can not construct the sensitive components of a nuclear reactor. Akkuyu is like a system that produces energy for Turkey. It would be the same thing if Russia build that plant in a place that is near Turkey. In addition, there is the fate of spent fuels. Russia takes away all the spent fuels, these spent fuels can be removed from Turkey in two ways: by water, starting from the Akkuyu harbor, the ship will pass through the Turkish straits, then pass to the Black Sea and pass through the Novorossiysk harbor to reach Siberia and by land, from Akkuyu it will arrive in Samsun or Trabzon then by water the ship will arrive in Siberia. I suppose spent fuels are going to be transported by water.

    What are your thoughts on molten salt reactors?

    Molten Salt Reactor is a Gen. 4 reactor and has a lot of advantages. First of all, the fuel of the MSR is molten salt so it is a liquid fuel. Since I am interested in the fuel production part of nuclear energy I am aware of the challenges of solid fuel production. Having liquid fuel is a big virtue. Liquid fuel can be ThF4-UF4. The fuel production step can proceed as: UF4 may be imported as enriched uranium. If you have the technology then UF₆ may be imported as enriched uranium then UF₆ can be converted to UF4. After that step fabrication of the liquid fuel is easier than solid fuel. Second, MSR has a lot of developments in the safety systems of a nuclear reactor. There is no fuel melting danger because it is already melted. The liquid fuel is approximately 700 °C. The important point is molten salt may freeze. If fuel temperature is below approximately 550°C the fuel becomes solid we don’t want that to happen. Also, the fuel has a negative temperature coefficient which means that as the temperature of the fuel rises reactivity of the fuel is going to decrease. There is a freeze plug at the bottom of the core. If the core overheats the freeze plug will melt and the contents of the core will be dropped into a containment tank fed by gravity. This is a precaution against the loss of coolant accident. One of the other advantages is reprocessing opportunity. It is possible with helium to remove volatile fission products from the reactor core. Tritium can be a problem but if the amount of tritium is below the critical level then it wouldn’t be a problem.

    ” Molten Salt Reactors are advantageous in many ways. The fuel is already melted, freeze plug is going to melt in case of an overheating issue, reproccessing is easier than the solid fuel. ”

    FİGES took on the task of designing MSR’s heat exchangers in the SAMOFAR project and your designs were approved. Can you talk a bit about heat exchangers? What are the differences with a PWR exchanger? Why did it need to be redesigned?

    There are a lot of differences between a PWR heat exchanger and an MSR heat exchanger. The basic difference is, that in a PWR heat exchanger steam is produced from water. MSR heat exchanger is working with molten salt to produce steam. FİGES finished calculations like the flow rate of the molten salt, the temperature of the molten salt, etc. for a heat exchanger of SAMOFAR. The heat exchanger is made of a material that is the same as the reactor core. In SAMOFAR, Hastelloy is used but boron carbide sheeting may be used for the heat exchanger.

    Can you talk a little bit about your collaboration with Thorium Network?

    The Founder of the Thorium Network Jeremiah has contacted FİGES about 5 months ago. We met him in one of the FİGES offices which are located in İstanbul. We have discussed what we have done in Turkey thus far. We signed an agreement about sharing networks. We share the thorium and molten salt reactor-based projects with them and they do the same.

    If the idea of building an MSR in Turkey is accepted, where will FİGES take part in this project?

    As FİGES, building an MSR in Turkey has two steps. The first step is about design. To design a reactor you need software. The existing codes are for solid fuel. First of all the codes that are going to be used for liquid fuel must be developed. There are companies that work to develop required software all around the world. We want to take part in the design step as FİGES. After the design is finished the second step comes. The second step is building the reactor. FİGES doesn’t have the base to build a reactor but an agreement can be made with companies that can build a nuclear power plant.

    Do you have any advice you can give to nuclear power engineer candidates who want to work on MSR? What can students do about it?

    There are tons of documents about Molten Salt Reactor Technology. These documents are about the material of the reactor core, software codes, design, etc. A student can find everything about MSR on the internet. In addition to this, students should follow the Denmark-based company that is called “Seaborg“. They have a compact molten salt reactor design. Also, there is another MSR design called “ThorCon“. Students can follow the articles, presentations, and events about these two MSR designs. As I said, students must research and follow the literature about Molten Salt Fission Technology.

    . . .

    It was a great opportunity for me to meet Mr. Reşat who has been working to develop nuclear energy in Turkey. I would like to thank him for his time and great answers.

    As students, we are going to change the world step by step with Molten Salt Fission Technology by our side. We are going to continue doing interviews with key people in nuclear energy and MSR!

    The Student Guild of the Thorium Network

    LINKS AND REFERENCES:

    1. Dr. Reşat Uzmen on Linkedin
    2. Rana on Linkedin
    3. The interview on Youtube
    4. Figes AS
    5. SAMOFAR
    6. Atoms for Peace
    7. Interview #2, Mr. Emre Kiraç “Leading to Nuclear”
    8. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
    9. The Thorium Student Guild

    #ThoriumStudentGuild #LeadingToNuclear #Interview #ResatUzmen #Figes #Turkey